IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v136y2014icp143-149.html
   My bibliography  Save this article

Passive vapor-feed direct methanol fuel cell using sintered porous metals to realize high-concentration operation

Author

Listed:
  • Yuan, Wei
  • Zhang, Zhaochun
  • Hu, Jinyi
  • Zhou, Bo
  • Tang, Yong

Abstract

The use of methanol vapor is helpful to reduce the effect of methanol crossover in a direct methanol fuel cell. This study develops a passive vapor-feed direct methanol fuel cell (VF-DMFC) based on a pervaporation membrane and sintered porous metals which act as functional layers for effective control of the mass transfer process. The feasibility of using this method is experimentally validated. For the cathode, a sintered porous metal-fiber plate (SPMFP) with great hydrophobicity is used as a water management layer to enhance water back diffusion from the cathode to the anode. Results indicate that the use of a SPMFP promotes a higher cell performance especially when a higher methanol concentration is used. The highest peak power density of 19.3mW/cm2 is achieved at an ambient temperature when 12M methanol is supplied. Neat-methanol operation is also viable under this condition. The cathode current collector (CC) with a window-like pattern yields a higher cell performance than the parallel-channel. For the anode, the use of a hydrophilic sintered porous metal-powder plate (SPMPP) embedded in the anode CC reduces the cell performance due to limitation of methanol delivery. This work also reports the influences of methanol concentration and vapor chamber temperature.

Suggested Citation

  • Yuan, Wei & Zhang, Zhaochun & Hu, Jinyi & Zhou, Bo & Tang, Yong, 2014. "Passive vapor-feed direct methanol fuel cell using sintered porous metals to realize high-concentration operation," Applied Energy, Elsevier, vol. 136(C), pages 143-149.
  • Handle: RePEc:eee:appene:v:136:y:2014:i:c:p:143-149
    DOI: 10.1016/j.apenergy.2014.09.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914009933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.09.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Q.X. & Zhao, T.S. & Chen, R. & An, L., 2013. "A sandwich structured membrane for direct methanol fuel cells operating with neat methanol," Applied Energy, Elsevier, vol. 106(C), pages 301-306.
    2. Yuan, Wei & Tang, Yong & Yang, Xiaojun & Wan, Zhenping, 2012. "Porous metal materials for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 94(C), pages 309-329.
    3. Seo, Sang Hern & Lee, Chang Sik, 2010. "A study on the overall efficiency of direct methanol fuel cell by methanol crossover current," Applied Energy, Elsevier, vol. 87(8), pages 2597-2604, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Guicheng & Li, Xinyang & Wang, Hui & Liu, Xiuying & Chen, Ming & Woo, Jae Young & Kim, Ji Young & Wang, Xindong & Lee, Joong Kee, 2017. "Design of 3-electrode system for in situ monitoring direct methanol fuel cells during long-time running test at high temperature," Applied Energy, Elsevier, vol. 197(C), pages 163-168.
    2. Yuan, Wei & Yan, Zhiguo & Tan, Zhenhao & Wang, Aoyu & Li, Zongtao & Tang, Yong, 2016. "Anode optimization based on gradient porous control medium for passive liquid-feed direct methanol fuel cells," Renewable Energy, Elsevier, vol. 89(C), pages 71-79.
    3. Li, Yang & Zhang, Xuelin & Yuan, Weijian & Zhang, Yufeng & Liu, Xiaowei, 2018. "A novel CO2 gas removal design for a micro passive direct methanol fuel cell," Energy, Elsevier, vol. 157(C), pages 599-607.
    4. Zhang, Yufeng & Xue, Rui & Zhang, Xuelin & Song, Jiaying & Liu, Xiaowei, 2015. "rGO deposited in stainless steel fiber felt as mass transfer barrier layer for μ-DMFC," Energy, Elsevier, vol. 91(C), pages 1081-1086.
    5. Abdelkareem, Mohammad Ali & Allagui, Anis & Sayed, Enas Taha & El Haj Assad, M. & Said, Zafar & Elsaid, Khaled, 2019. "Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells," Renewable Energy, Elsevier, vol. 131(C), pages 563-584.
    6. Sun, Zuo-Yu & Li, Guo-Xiu, 2015. "On reliability and flexibility of sustainable energy application route for vehicles in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 830-846.
    7. Calabriso, Andrea & Borello, Domenico & Romano, Giovanni Paolo & Cedola, Luca & Del Zotto, Luca & Santori, Simone Giovanni, 2017. "Bubbly flow mapping in the anode channel of a direct methanol fuel cell via PIV investigation," Applied Energy, Elsevier, vol. 185(P2), pages 1245-1255.
    8. Yan, X.H. & Zhao, T.S. & An, L. & Zhao, G. & Zeng, L., 2015. "A crack-free and super-hydrophobic cathode micro-porous layer for direct methanol fuel cells," Applied Energy, Elsevier, vol. 138(C), pages 331-336.
    9. Johánek, Viktor & Ostroverkh, Anna & Fiala, Roman, 2019. "Vapor-feed low temperature direct methanol fuel cell with Pt and PtRu electrodes: Chemistry insight," Renewable Energy, Elsevier, vol. 138(C), pages 409-415.
    10. Yuan, Wei & Wang, Aoyu & Yan, Zhiguo & Tan, Zhenhao & Tang, Yong & Xia, Hongrong, 2016. "Visualization of two-phase flow and temperature characteristics of an active liquid-feed direct methanol fuel cell with diverse flow fields," Applied Energy, Elsevier, vol. 179(C), pages 85-98.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calabriso, Andrea & Borello, Domenico & Romano, Giovanni Paolo & Cedola, Luca & Del Zotto, Luca & Santori, Simone Giovanni, 2017. "Bubbly flow mapping in the anode channel of a direct methanol fuel cell via PIV investigation," Applied Energy, Elsevier, vol. 185(P2), pages 1245-1255.
    2. Liu, Guicheng & Li, Xinyang & Wang, Hui & Liu, Xiuying & Chen, Ming & Woo, Jae Young & Kim, Ji Young & Wang, Xindong & Lee, Joong Kee, 2017. "Design of 3-electrode system for in situ monitoring direct methanol fuel cells during long-time running test at high temperature," Applied Energy, Elsevier, vol. 197(C), pages 163-168.
    3. Mehmood, Asad & Ha, Heung Yong, 2014. "Performance restoration of direct methanol fuel cells in long-term operation using a hydrogen evolution method," Applied Energy, Elsevier, vol. 114(C), pages 164-171.
    4. Kumar, Piyush & Dutta, Kingshuk & Das, Suparna & Kundu, Patit Paban, 2014. "Membrane prepared by incorporation of crosslinked sulfonated polystyrene in the blend of PVdF-co-HFP/Nafion: A preliminary evaluation for application in DMFC," Applied Energy, Elsevier, vol. 123(C), pages 66-74.
    5. Wang, Zhigang & Zhang, Xuelin & Nie, Li & Zhang, Yufeng & Liu, Xiaowei, 2014. "Elimination of water flooding of cathode current collector of micro passive direct methanol fuel cell by superhydrophilic surface treatment," Applied Energy, Elsevier, vol. 126(C), pages 107-112.
    6. Dutta, Kingshuk & Das, Suparna & Kumar, Piyush & Kundu, Patit Paban, 2014. "Polymer electrolyte membrane with high selectivity ratio for direct methanol fuel cells: A preliminary study based on blends of partially sulfonated polymers polyaniline and PVdF-co-HFP," Applied Energy, Elsevier, vol. 118(C), pages 183-191.
    7. Das, Suparna & Kumar, Piyush & Dutta, Kingshuk & Kundu, Patit Paban, 2014. "Partial sulfonation of PVdF-co-HFP: A preliminary study and characterization for application in direct methanol fuel cell," Applied Energy, Elsevier, vol. 113(C), pages 169-177.
    8. Zainoodin, A.M. & Kamarudin, S.K. & Masdar, M.S. & Daud, W.R.W. & Mohamad, A.B. & Sahari, J., 2014. "Investigation of MEA degradation in a passive direct methanol fuel cell under different modes of operation," Applied Energy, Elsevier, vol. 135(C), pages 364-372.
    9. Lo, An-Ya & Hung, Chin-Te & Yu, Ningya & Kuo, Cheng-Tzu & Liu, Shang-Bin, 2012. "Syntheses of carbon porous materials with varied pore sizes and their performances as catalyst supports during methanol oxidation reaction," Applied Energy, Elsevier, vol. 100(C), pages 66-74.
    10. Bae, Suk Joo & Kim, Seong-Joon & Lee, Jin-Hwa & Song, Inseob & Kim, Nam-In & Seo, Yongho & Kim, Ki Buem & Lee, Naesung & Park, Jun-Young, 2014. "Degradation pattern prediction of a polymer electrolyte membrane fuel cell stack with series reliability structure via durability data of single cells," Applied Energy, Elsevier, vol. 131(C), pages 48-55.
    11. Chen, Daifen & Zeng, Qice & Su, Shichuan & Bi, Wuxi & Ren, Zhiqiang, 2013. "Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold," Applied Energy, Elsevier, vol. 112(C), pages 1100-1107.
    12. Yuan, Zhenyu & Zhang, Yufeng & Fu, Wenting & Li, Zipeng & Liu, Xiaowei, 2013. "Investigation of a small-volume direct methanol fuel cell stack for portable applications," Energy, Elsevier, vol. 51(C), pages 462-467.
    13. Bao, Zhiming & Niu, Zhiqiang & Jiao, Kui, 2020. "Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 280(C).
    14. Zhao, Jian & Shahgaldi, Samaneh & Alaefour, Ibrahim & Xu, Qian & Li, Xianguo, 2018. "Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 203-210.
    15. Jiao, Kui & Bachman, John & Zhou, Yibo & Park, Jae Wan, 2014. "Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 115(C), pages 75-82.
    16. Kim, Joon-Hee & Yang, Min-Jee & Park, Jun-Young, 2014. "Improvement on performance and efficiency of direct methanol fuel cells using hydrocarbon-based membrane electrode assembly," Applied Energy, Elsevier, vol. 115(C), pages 95-102.
    17. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2016. "Materials and system requirements of high temperature thermal energy storage systems: A review. Part 2: Thermal conductivity enhancement techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1584-1601.
    18. Baik, Kyung Don & Seo, Il Sung, 2018. "Metallic bipolar plate with a multi-hole structure in the rib regions for polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 212(C), pages 333-339.
    19. Zhengang Zhao & Fan Zhang & Yanhui Zhang & Dacheng Zhang, 2021. "Performance Optimization of μ DMFC with Foamed Stainless Steel Cathode Current Collector," Energies, MDPI, vol. 14(20), pages 1-13, October.
    20. Yuan, Wei & Zhang, Xiaoqing & Zhang, Shiwei & Hu, Jinyi & Li, Zongtao & Tang, Yong, 2015. "Lightweight current collector based on printed-circuit-board technology and its structural effects on the passive air-breathing direct methanol fuel cell," Renewable Energy, Elsevier, vol. 81(C), pages 664-670.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:136:y:2014:i:c:p:143-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.