IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v83y2015icp234-244.html

Real-time prediction intervals for intra-hour DNI forecasts

Author

Listed:
  • Chu, Yinghao
  • Li, Mengying
  • Pedro, Hugo T.C.
  • Coimbra, Carlos F.M.

Abstract

We develop a hybrid, real-time solar forecasting computational model to construct prediction intervals (PIs) of one-minute averaged direct normal irradiance for four intra-hour forecasting horizons: five, ten, fifteen, and 20 min. This hybrid model, which integrates sky imaging techniques, support vector machine and artificial neural network sub-models, is developed using one year of co-located, high-quality irradiance and sky image recording in Folsom, California. We validate the proposed model using six-month of measured irradiance and sky image data, and apply it to construct operational PI forecasts in real-time at the same observatory. In the real-time scenario, the hybrid model significantly outperforms the reference persistence model and provides high performance PIs regardless of forecast horizon and weather condition.

Suggested Citation

  • Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "Real-time prediction intervals for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 83(C), pages 234-244.
  • Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:234-244
    DOI: 10.1016/j.renene.2015.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811500302X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chaabene, Maher & Ben Ammar, Mohsen, 2008. "Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems," Renewable Energy, Elsevier, vol. 33(7), pages 1435-1443.
    2. Yap, Wai Kean & Karri, Vishy, 2015. "An off-grid hybrid PV/diesel model as a planning and design tool, incorporating dynamic and ANN modelling techniques," Renewable Energy, Elsevier, vol. 78(C), pages 42-50.
    3. E. B. Iversen & J. M. Morales & J. K. Møller & H. Madsen, 2014. "Probabilistic forecasts of solar irradiance using stochastic differential equations," Environmetrics, John Wiley & Sons, Ltd., vol. 25(3), pages 152-164, May.
    4. Lave, Matthew & Kleissl, Jan, 2010. "Solar variability of four sites across the state of Colorado," Renewable Energy, Elsevier, vol. 35(12), pages 2867-2873.
    5. Chen, S.X. & Gooi, H.B. & Wang, M.Q., 2013. "Solar radiation forecast based on fuzzy logic and neural networks," Renewable Energy, Elsevier, vol. 60(C), pages 195-201.
    6. Al-Alawi, S.M. & Al-Hinai, H.A., 1998. "An ANN-based approach for predicting global radiation in locations with no direct measurement instrumentation," Renewable Energy, Elsevier, vol. 14(1), pages 199-204.
    7. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    8. Santos, J.M. & Pinazo, J.M. & Cañada, J., 2003. "Methodology for generating daily clearness index index values Kt starting from the monthly average daily value K̄t. Determining the daily sequence using stochastic models," Renewable Energy, Elsevier, vol. 28(10), pages 1523-1544.
    9. Zeng, Jianwu & Qiao, Wei, 2013. "Short-term solar power prediction using a support vector machine," Renewable Energy, Elsevier, vol. 52(C), pages 118-127.
    10. Sinha, S & Kumar, Sanjay & Matsumoto, Tsuyoshi & Kojima, Toshinori, 2001. "Application of system identification modelling to solar hybrid systems for predicting radiation, temperature and load," Renewable Energy, Elsevier, vol. 22(1), pages 281-286.
    11. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    12. Antonio Bracale & Pierluigi Caramia & Guido Carpinelli & Anna Rita Di Fazio & Gabriella Ferruzzi, 2013. "A Bayesian Method for Short-Term Probabilistic Forecasting of Photovoltaic Generation in Smart Grid Operation and Control," Energies, MDPI, vol. 6(2), pages 1-15, February.
    13. Zagouras, Athanassios & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "On the role of lagged exogenous variables and spatio–temporal correlations in improving the accuracy of solar forecasting methods," Renewable Energy, Elsevier, vol. 78(C), pages 203-218.
    14. García-Domingo, B. & Piliougine, M. & Elizondo, D. & Aguilera, J., 2015. "CPV module electric characterisation by artificial neural networks," Renewable Energy, Elsevier, vol. 78(C), pages 173-181.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chu, Yinghao & Li, Mengying & Coimbra, Carlos F.M., 2016. "Sun-tracking imaging system for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 96(PA), pages 792-799.
    2. Fatemi, Seyyed A. & Kuh, Anthony & Fripp, Matthias, 2018. "Parametric methods for probabilistic forecasting of solar irradiance," Renewable Energy, Elsevier, vol. 129(PA), pages 666-676.
    3. Chu, Yinghao & Coimbra, Carlos F.M., 2017. "Short-term probabilistic forecasts for Direct Normal Irradiance," Renewable Energy, Elsevier, vol. 101(C), pages 526-536.
    4. Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2022. "A network of sky imagers for spatial solar irradiance assessment," Renewable Energy, Elsevier, vol. 187(C), pages 1009-1019.
    5. Fatemi, Seyyed A. & Kuh, Anthony & Fripp, Matthias, 2016. "Online and batch methods for solar radiation forecast under asymmetric cost functions," Renewable Energy, Elsevier, vol. 91(C), pages 397-408.
    6. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
    7. Yu, Hanxin & Chen, Shanlin & Chu, Yinghao & Li, Mengying & Ding, Yueming & Cui, Rongxi & Zhao, Xin, 2024. "Self-attention mechanism to enhance the generalizability of data-driven time-series prediction: A case study of intra-hour power forecasting of urban distributed photovoltaic systems," Applied Energy, Elsevier, vol. 374(C).
    8. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    9. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    10. Ahmad, Muhammad Waseem & Mourshed, Monjur & Rezgui, Yacine, 2018. "Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression," Energy, Elsevier, vol. 164(C), pages 465-474.
    11. Nonnenmacher, Lukas & Kaur, Amanpreet & Coimbra, Carlos F.M., 2016. "Day-ahead resource forecasting for concentrated solar power integration," Renewable Energy, Elsevier, vol. 86(C), pages 866-876.
    12. Marzouq, Manal & El Fadili, Hakim & Zenkouar, Khalid & Lakhliai, Zakia & Amouzg, Mohammed, 2020. "Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data," Renewable Energy, Elsevier, vol. 157(C), pages 214-231.
    13. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    14. Arsalan Masood & Ubaid Ahmed & Syed Zulqadar Hassan & Ahsan Raza Khan & Anzar Mahmood, 2025. "Economic Value Creation of Artificial Intelligence in Supporting Variable Renewable Energy Resource Integration to Power Systems: A Systematic Review," Sustainability, MDPI, vol. 17(6), pages 1-42, March.
    15. Voyant, Cyril & Paoli, Christophe & Muselli, Marc & Nivet, Marie-Laure, 2013. "Multi-horizon solar radiation forecasting for Mediterranean locations using time series models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 44-52.
    16. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    17. Happy Aprillia & Hong-Tzer Yang & Chao-Ming Huang, 2020. "Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm," Energies, MDPI, vol. 13(8), pages 1-20, April.
    18. Heo, Jae & Jung, Jaehoon & Kim, Byungil & Han, SangUk, 2020. "Digital elevation model-based convolutional neural network modeling for searching of high solar energy regions," Applied Energy, Elsevier, vol. 262(C).
    19. Liu, Tianhao & Shan, Linke & Jiang, Meihui & Li, Fangning & Kong, Fannie & Du, Pengcheng & Zhu, Hongyu & Goh, Hui Hwang & Kurniawan, Tonni Agustiono & Huang, Chao & Zhang, Dongdong, 2025. "Multi-dimensional data processing and intelligent forecasting technologies for renewable energy generation," Applied Energy, Elsevier, vol. 398(C).
    20. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:83:y:2015:i:c:p:234-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.