IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v81y2015icp21-30.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Spatiotemporal variability of ground thermal properties in glacial sediments and implications for horizontal ground heat exchanger design

Author

Listed:
  • Naylor, Shawn
  • Ellett, Kevin M.
  • Gustin, Andrew R.

Abstract

Thorough characterization of the spatiotemporal variability in soil thermal properties can facilitate better designs for horizontal geothermal heat pump (HGHP) systems by reducing ground heat exchanger (GHEX) costs. Results are presented from a new monitoring network installed across a range of glaciated terrains in Indiana (USA), including the first known observations of the dynamic range of thermal conductivity that occurs at the depth of horizontal GHEX installations. In situ thermal conductivity data can vary significantly on a seasonal basis in coarse-grained outwash sediments (0.8–1.4 W m−1 K−1), whereas clay- and silt-dominated moraine sediments have a dampened seasonal range within 10% of the annual mean. Thermal conductivity across the network ranges from 0.8 to 2.0 W m−1 K−1 depending on soil parent material, climatic setting, and particularly, soil-moisture variability. Results indicate that the standard industry practice to estimate thermal properties from soil type often leads to suboptimal GHEX design (i.e., GHEX design lengths were 44–52% longer than necessary to meet performance specifications). This research suggests that expanding the characterization of soil thermal properties in specific settings where HGHPs are targeted will improve understanding of the dynamic aspects of ground heat exchange and lead to more optimal HGHP system designs.

Suggested Citation

  • Naylor, Shawn & Ellett, Kevin M. & Gustin, Andrew R., 2015. "Spatiotemporal variability of ground thermal properties in glacial sediments and implications for horizontal ground heat exchanger design," Renewable Energy, Elsevier, vol. 81(C), pages 21-30.
  • Handle: RePEc:eee:renene:v:81:y:2015:i:c:p:21-30
    DOI: 10.1016/j.renene.2015.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115001883
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pavel Neuberger & Radomír Adamovský & Michaela Šeďová, 2014. "Temperatures and Heat Flows in a Soil Enclosing a Slinky Horizontal Heat Exchanger," Energies, MDPI, vol. 7(2), pages 1-16, February.
    2. Cho, Honghyun & Choi, Jong Min, 2014. "The quantitative evaluation of design parameter's effects on a ground source heat pump system," Renewable Energy, Elsevier, vol. 65(C), pages 2-6.
    3. Hajmohammadi, M.R. & Eskandari, H. & Saffar-Avval, M. & Campo, A., 2013. "A new configuration of bend tubes for compound optimization of heat and fluid flow," Energy, Elsevier, vol. 62(C), pages 418-424.
    4. Garcia Gonzalez, Raquel & Verhoef, Anne & Vidale, Pier Luigi & Main, Bruce & Gan, Guogui & Wu, Yupeng, 2012. "Interactions between the physical soil environment and a horizontal ground coupled heat pump, for a domestic site in the UK," Renewable Energy, Elsevier, vol. 44(C), pages 141-153.
    5. Xu, Huining & Spitler, Jeffrey D., 2014. "The relative importance of moisture transfer, soil freezing and snow cover on ground temperature predictions," Renewable Energy, Elsevier, vol. 72(C), pages 1-11.
    6. Chong, Chiew Shan Anthony & Gan, Guohui & Verhoef, Anne & Garcia, Raquel Gonzalez & Vidale, Pier Luigi, 2013. "Simulation of thermal performance of horizontal slinky-loop heat exchangers for ground source heat pumps," Applied Energy, Elsevier, vol. 104(C), pages 603-610.
    7. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cuny, Mathias & Lin, Jian & Siroux, Monica & Fond, Christophe, 2020. "Influence of rainfall events on the energy performance of an earth-air heat exchanger embedded in a multilayered soil," Renewable Energy, Elsevier, vol. 147(P2), pages 2664-2675.
    2. Gan, Guohui, 2018. "Dynamic thermal performance of horizontal ground source heat pumps – The impact of coupled heat and moisture transfer," Energy, Elsevier, vol. 152(C), pages 877-887.
    3. Tang, Fujiao & Nowamooz, Hossein, 2020. "Outlet temperatures of a slinky-type Horizontal Ground Heat Exchanger with the atmosphere-soil interaction," Renewable Energy, Elsevier, vol. 146(C), pages 705-718.
    4. Al-Ameen, Yasameen & Ianakiev, Anton & Evans, Robert, 2018. "Recycling construction and industrial landfill waste material for backfill in horizontal ground heat exchanger systems," Energy, Elsevier, vol. 151(C), pages 556-568.
    5. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.
    6. Al-Ameen, Yasameen & Ianakiev, Anton & Evans, Robert, 2017. "Thermal performance of a solar assisted horizontal ground heat exchanger," Energy, Elsevier, vol. 140(P1), pages 1216-1227.
    7. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Performance of a residential ground source heat pump system in sedimentary rock formation," Applied Energy, Elsevier, vol. 164(C), pages 89-98.
    8. Jeon, Jun-Seo & Lee, Seung-Rae & Kim, Min-Jun, 2018. "A modified mathematical model for spiral coil-type horizontal ground heat exchangers," Energy, Elsevier, vol. 152(C), pages 732-743.
    9. Han, Chanjuan & Ellett, Kevin M. & Naylor, Shawn & Yu, Xiong (Bill), 2017. "Influence of local geological data on the performance of horizontal ground-coupled heat pump system integrated with building thermal loads," Renewable Energy, Elsevier, vol. 113(C), pages 1046-1055.
    10. Jun-Seo Jeon & Seung-Rae Lee & Min-Jun Kim & Seok Yoon, 2018. "Suggestion of a Scale Factor to Design Spiral-Coil-Type Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 11(10), pages 1-16, October.
    11. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of natural convection on thermal response test conducted in saturated porous formation: Comparison of gravel-backfilled and cement-grouted borehole heat exchangers," Renewable Energy, Elsevier, vol. 96(PA), pages 891-903.
    12. Go, Gyu-Hyun & Lee, Seung-Rae & Yoon, Seok & Kim, Min-Jun, 2016. "Optimum design of horizontal ground-coupled heat pump systems using spiral-coil-loop heat exchangers," Applied Energy, Elsevier, vol. 162(C), pages 330-345.
    13. Chalhoub, Maha & Bernier, Michel & Coquet, Yves & Philippe, Mikael, 2017. "A simple heat and moisture transfer model to predict ground temperature for shallow ground heat exchangers," Renewable Energy, Elsevier, vol. 103(C), pages 295-307.
    14. Krzysztof Neupauer & Sebastian Pater & Krzysztof Kupiec, 2018. "Study of Ground Heat Exchangers in the Form of Parallel Horizontal Pipes Embedded in the Ground," Energies, MDPI, vol. 11(3), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eloisa Di Sipio & David Bertermann, 2017. "Factors Influencing the Thermal Efficiency of Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 10(11), pages 1-21, November.
    2. Pavel Pauli & Pavel Neuberger & Radomír Adamovský, 2016. "Monitoring and Analysing Changes in Temperature and Energy in the Ground with Installed Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 9(8), pages 1-13, July.
    3. Bryś, Krystyna & Bryś, Tadeusz & Sayegh, Marderos Ara & Ojrzyńska, Hanna, 2020. "Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps," Renewable Energy, Elsevier, vol. 146(C), pages 1846-1866.
    4. Krzysztof Neupauer & Sebastian Pater & Krzysztof Kupiec, 2018. "Study of Ground Heat Exchangers in the Form of Parallel Horizontal Pipes Embedded in the Ground," Energies, MDPI, vol. 11(3), pages 1-16, February.
    5. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    6. Gan, Guohui, 2017. "Dynamic thermal simulation of horizontal ground heat exchangers for renewable heating and ventilation of buildings," Renewable Energy, Elsevier, vol. 103(C), pages 361-371.
    7. Xiong, Zeyu & Fisher, Daniel E. & Spitler, Jeffrey D., 2015. "Development and validation of a Slinky™ ground heat exchanger model," Applied Energy, Elsevier, vol. 141(C), pages 57-69.
    8. Go, Gyu-Hyun & Lee, Seung-Rae & Yoon, Seok & Kim, Min-Jun, 2016. "Optimum design of horizontal ground-coupled heat pump systems using spiral-coil-loop heat exchangers," Applied Energy, Elsevier, vol. 162(C), pages 330-345.
    9. Pavel Neuberger & Radomír Adamovský, 2017. "Analysis of the Potential of Low-Temperature Heat Pump Energy Sources," Energies, MDPI, vol. 10(11), pages 1-14, November.
    10. Bertermann, D. & Klug, H. & Morper-Busch, L., 2015. "A pan-European planning basis for estimating the very shallow geothermal energy potentials," Renewable Energy, Elsevier, vol. 75(C), pages 335-347.
    11. Jun-Seo Jeon & Seung-Rae Lee & Min-Jun Kim & Seok Yoon, 2018. "Suggestion of a Scale Factor to Design Spiral-Coil-Type Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 11(10), pages 1-16, October.
    12. Girard, Aymeric & Gago, Eulalia Jadraque & Muneer, Tariq & Caceres, Gustavo, 2015. "Higher ground source heat pump COP in a residential building through the use of solar thermal collectors," Renewable Energy, Elsevier, vol. 80(C), pages 26-39.
    13. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    14. Mushk Bughio & Swati Bahale & Waqas Ahmed Mahar & Thorsten Schuetze, 2022. "Parametric Performance Analysis of the Cooling Potential of Earth-to-Air Heat Exchangers in Hot and Humid Climates," Energies, MDPI, vol. 15(19), pages 1-21, September.
    15. Lili Tan & James A. Love, 2013. "A Literature Review on Heating of Ventilation Air with Large Diameter Earth Tubes in Cold Climates," Energies, MDPI, vol. 6(8), pages 1-10, July.
    16. Anand, Vishal, 2014. "Slip law effects on heat transfer and entropy generation of pressure driven flow of a power law fluid in a microchannel under uniform heat flux boundary condition," Energy, Elsevier, vol. 76(C), pages 716-732.
    17. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.
    18. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    19. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    20. Trumpy, Eugenio & Bertani, Ruggero & Manzella, Adele & Sander, Marietta, 2015. "The web-oriented framework of the world geothermal production database: A business intelligence platform for wide data distribution and analysis," Renewable Energy, Elsevier, vol. 74(C), pages 379-389.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:81:y:2015:i:c:p:21-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.