IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v80y2015icp26-39.html
   My bibliography  Save this article

Higher ground source heat pump COP in a residential building through the use of solar thermal collectors

Author

Listed:
  • Girard, Aymeric
  • Gago, Eulalia Jadraque
  • Muneer, Tariq
  • Caceres, Gustavo

Abstract

This article investigates the feasibility of achieving higher performance from ground-source heat-pumps (GSHP) in space heating mode through the use of solar thermal collectors. A novel simulation tool for solar-assisted ground-source heat-pumps (SGSHP) is presented with an analysis of the influence of solar collectors on the improvement of heat pump performance. Solar radiation and climate temperature data of 19 European cities were used to perform simulations of SGSHP and GSHP systems considering a typical residential house. Overall performance coefficients (COPsys) varied from northern to southern locations between 4.4 and 5.8 for SGSHP and between 4.3 and 5.1 for GSHP. Results show that solar collectors coupling has more impact on performance improvement in regions that benefit from higher irradiance. However, greater running cost savings are achieved in milder climate conditions. Both heat-pump systems are able to effectively contribute to carbon footprint reductions for residential buildings, especially in countries where fossil fuels are the primary source of electricity generation. SGSHP payback periods are found between 8.5 and 23 years from northern to southern localities, making such heating system an economic heating option. SGSHPs are best suited for high irradiance and cool climate locations such as the mountainous regions in southern Europe.

Suggested Citation

  • Girard, Aymeric & Gago, Eulalia Jadraque & Muneer, Tariq & Caceres, Gustavo, 2015. "Higher ground source heat pump COP in a residential building through the use of solar thermal collectors," Renewable Energy, Elsevier, vol. 80(C), pages 26-39.
  • Handle: RePEc:eee:renene:v:80:y:2015:i:c:p:26-39
    DOI: 10.1016/j.renene.2015.01.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115000816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.01.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cho, Honghyun & Choi, Jong Min, 2014. "The quantitative evaluation of design parameter's effects on a ground source heat pump system," Renewable Energy, Elsevier, vol. 65(C), pages 2-6.
    2. Yildiz, Abdullah & Güngör, Ali, 2009. "Energy and exergy analyses of space heating in buildings," Applied Energy, Elsevier, vol. 86(10), pages 1939-1948, October.
    3. Kim, Wonseok & Choi, Jongmin & Cho, Honghyun, 2013. "Performance analysis of hybrid solar-geothermal CO2 heat pump system for residential heating," Renewable Energy, Elsevier, vol. 50(C), pages 596-604.
    4. Chow, T.T. & Bai, Y. & Fong, K.F. & Lin, Z., 2012. "Analysis of a solar assisted heat pump system for indoor swimming pool water and space heating," Applied Energy, Elsevier, vol. 100(C), pages 309-317.
    5. Chung, Jin Taek & Choi, Jong Min, 2012. "Design and performance study of the ground-coupled heat pump system with an operating parameter," Renewable Energy, Elsevier, vol. 42(C), pages 118-124.
    6. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    7. Badescu, Viorel, 2002. "Model of a space heating system integrating a heat pump, photothermal collectors and solar cells," Renewable Energy, Elsevier, vol. 27(4), pages 489-505.
    8. Kaygusuz, K. & Ayhan, T., 1993. "Exergy analysis of solar-assisted heat-pump systems for domestic heating," Energy, Elsevier, vol. 18(10), pages 1077-1085.
    9. Chen, Xi & Yang, Hongxing, 2012. "Performance analysis of a proposed solar assisted ground coupled heat pump system," Applied Energy, Elsevier, vol. 97(C), pages 888-896.
    10. Georgiev, A., 2008. "Testing solar collectors as an energy source for a heat pump," Renewable Energy, Elsevier, vol. 33(4), pages 832-838.
    11. Pulat, Erhan & Coskun, Salih & Unlu, Kursat & Yamankaradeniz, Nurettin, 2009. "Experimental study of horizontal ground source heat pump performance for mild climate in Turkey," Energy, Elsevier, vol. 34(9), pages 1284-1295.
    12. Huang, B.J & Lee, C.P, 2004. "Long-term performance of solar-assisted heat pump water heater," Renewable Energy, Elsevier, vol. 29(4), pages 633-639.
    13. Abdeen Omer & Abdeen Mustafa Omer, 2014. "Soil Thermal Properties and the Effects of Groundwater on Closed Loops," International Journal of Sustainable Energy and Environmental Research, Conscientia Beam, vol. 3(1), pages 34-52.
    14. Papathanasopoulou, Eleni, 2010. "Household consumption, associated fossil fuel demand and carbon dioxide emissions: The case of Greece between 1990 and 2006," Energy Policy, Elsevier, vol. 38(8), pages 4152-4162, August.
    15. Bi, Yuehong & Guo, Tingwei & Zhang, Liang & Chen, Lingen, 2004. "Solar and ground source heat-pump system," Applied Energy, Elsevier, vol. 78(2), pages 231-245, June.
    16. Wang, Huajun & Qi, Chengying & Wang, Enyu & Zhao, Jun, 2009. "A case study of underground thermal storage in a solar-ground coupled heat pump system for residential buildings," Renewable Energy, Elsevier, vol. 34(1), pages 307-314.
    17. Choi, Jongmin & Kang, Byun & Cho, Honghyun, 2014. "Performance comparison between R22 and R744 solar-geothermal hybrid heat pumps according to heat source conditions," Renewable Energy, Elsevier, vol. 71(C), pages 414-424.
    18. Chow, T.T. & Pei, G. & Fong, K.F. & Lin, Z. & Chan, A.L.S. & He, M., 2010. "Modeling and application of direct-expansion solar-assisted heat pump for water heating in subtropical Hong Kong," Applied Energy, Elsevier, vol. 87(2), pages 643-649, February.
    19. Barrett, Mark & Lowe, Robert & Oreszczyn, Tadj & Steadman, Philip, 2008. "How to support growth with less energy," Energy Policy, Elsevier, vol. 36(12), pages 4592-4599, December.
    20. Garcia Gonzalez, Raquel & Verhoef, Anne & Vidale, Pier Luigi & Main, Bruce & Gan, Guogui & Wu, Yupeng, 2012. "Interactions between the physical soil environment and a horizontal ground coupled heat pump, for a domestic site in the UK," Renewable Energy, Elsevier, vol. 44(C), pages 141-153.
    21. John W. Lund, 2010. "Direct Utilization of Geothermal Energy," Energies, MDPI, vol. 3(8), pages 1-29, August.
    22. Abdeen Mustafa Omer, 2014. "Soil Thermal Properties and the Effects of Groundwater on Closed Loops," International Journal of Sustainable Energy and Environmental Research, Conscientia Beam, vol. 3(1), pages 34-52.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    2. Badiei, A. & Golizadeh Akhlaghi, Y. & Zhao, X. & Shittu, S. & Xiao, X. & Li, J. & Fan, Y. & Li, G., 2020. "A chronological review of advances in solar assisted heat pump technology in 21st century," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    4. Yang, Weibo & Zhang, Heng & Liang, Xingfu, 2018. "Experimental performance evaluation and parametric study of a solar-ground source heat pump system operated in heating modes," Energy, Elsevier, vol. 149(C), pages 173-189.
    5. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "A study on energy and CO2 saving potential of ground source heat pump system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 278-293.
    6. Bakirci, Kadir & Ozyurt, Omer & Comakli, Kemal & Comakli, Omer, 2011. "Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications," Energy, Elsevier, vol. 36(5), pages 3224-3232.
    7. Moya, Diego & Aldás, Clay & Kaparaju, Prasad, 2018. "Geothermal energy: Power plant technology and direct heat applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 889-901.
    8. Georgiev, Aleksandar & Popov, Rumen & Toshkov, Emil, 2020. "Investigation of a hybrid system with ground source heat pump and solar collectors: Charging of thermal storages and space heating," Renewable Energy, Elsevier, vol. 147(P2), pages 2774-2790.
    9. Buker, Mahmut Sami & Riffat, Saffa B., 2016. "Solar assisted heat pump systems for low temperature water heating applications: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 399-413.
    10. Michopoulos, A. & Zachariadis, T. & Kyriakis, N., 2013. "Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger," Energy, Elsevier, vol. 51(C), pages 349-357.
    11. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    12. Arat, Halit & Arslan, Oguz, 2017. "Exergoeconomic analysis of district heating system boosted by the geothermal heat pump," Energy, Elsevier, vol. 119(C), pages 1159-1170.
    13. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    14. Mohamed, Elamin & Riffat, Saffa & Omer, Siddig & Zeinelabdein, Rami, 2019. "A comprehensive investigation of using mutual air and water heating in multi-functional DX-SAMHP for moderate cold climate," Renewable Energy, Elsevier, vol. 130(C), pages 582-600.
    15. Francesco Calise & Rafal Damian Figaj & Laura Vanoli, 2018. "Energy and Economic Analysis of Energy Savings Measures in a Swimming Pool Centre by Means of Dynamic Simulations," Energies, MDPI, vol. 11(9), pages 1-27, August.
    16. Qi, Zishu & Gao, Qing & Liu, Yan & Yan, Y.Y. & Spitler, Jeffrey D., 2014. "Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 37-51.
    17. Xi, Chen & Hongxing, Yang & Lin, Lu & Jinggang, Wang & Wei, Liu, 2011. "Experimental studies on a ground coupled heat pump with solar thermal collectors for space heating," Energy, Elsevier, vol. 36(8), pages 5292-5300.
    18. Geng, Yong & Sarkis, Joseph & Wang, Xinbei & Zhao, Hongyan & Zhong, Yongguang, 2013. "Regional application of ground source heat pump in China: A case of Shenyang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 95-102.
    19. Calise, Francesco & Dentice d'Accadia, Massimo & Figaj, Rafal Damian & Vanoli, Laura, 2016. "A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization," Energy, Elsevier, vol. 95(C), pages 346-366.
    20. Bi, Yuehong & Wang, Xinhong & Liu, Yun & Zhang, Hua & Chen, Lingen, 2009. "Comprehensive exergy analysis of a ground-source heat pump system for both building heating and cooling modes," Applied Energy, Elsevier, vol. 86(12), pages 2560-2565, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:80:y:2015:i:c:p:26-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.