IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v80y2015icp166-176.html
   My bibliography  Save this article

Thermodynamic analysis and reaction routes of steam reforming of bio-oil aqueous fraction

Author

Listed:
  • Resende, K.A.
  • Ávila-Neto, C.N.
  • Rabelo-Neto, R.C.
  • Noronha, F.B.
  • Hori, C.E.

Abstract

Steam reforming of the bio-oil aqueous fraction is a potential process to produce hydrogen. Therefore, to perform a thermodynamic study of this process can be interesting to determine the most favorable operating conditions. The calculations were made using a model compound and an aqueous fraction of a specific bio-oil. The data were obtained at different temperatures and for different steam(S)/fuel(F)ratios. Thermodynamic data showed that the behavior of model compounds was very similar to the one observed for the aqueous fraction of bio-oil. Therefore, acetic acid was used as a model compound of the aqueous fraction of bio-oil in the experimental tests. Temperature-programmed acetic acid desorption, temperature programmed reaction and steam reforming reactions were conducted. The experimental results were correlated with data predicted by thermodynamic analyses. There was a good correlation between the experimental results and predicted by equilibrium calculations. It helped to clarify the possible reactions pathways that are present in the reform process studied. According to the results the steam reforming of acetic acid can follow two different routes: (i) acetic acid can be converted to acetone at intermediate temperatures or (ii) acetic acid is transformed into adsorbed acetate species (CH3COO*) followed by decomposition into acetyl species (CH3CO*).

Suggested Citation

  • Resende, K.A. & Ávila-Neto, C.N. & Rabelo-Neto, R.C. & Noronha, F.B. & Hori, C.E., 2015. "Thermodynamic analysis and reaction routes of steam reforming of bio-oil aqueous fraction," Renewable Energy, Elsevier, vol. 80(C), pages 166-176.
  • Handle: RePEc:eee:renene:v:80:y:2015:i:c:p:166-176
    DOI: 10.1016/j.renene.2015.01.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115000750
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.01.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayalur Chattanathan, Shyamsundar & Adhikari, Sushil & Abdoulmoumine, Nourredine, 2012. "A review on current status of hydrogen production from bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2366-2372.
    2. An, Lu & Dong, Changqing & Yang, Yongping & Zhang, Junjiao & He, Lei, 2011. "The influence of Ni loading on coke formation in steam reforming of acetic acid," Renewable Energy, Elsevier, vol. 36(3), pages 930-935.
    3. Medrano, J.A. & Oliva, M. & Ruiz, J. & García, L. & Arauzo, J., 2011. "Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed," Energy, Elsevier, vol. 36(4), pages 2215-2224.
    4. de Ávila, C.N. & Hori, C.E. & de Assis, A.J., 2011. "Thermodynamic assessment of hydrogen production and cobalt oxidation susceptibility under ethanol reforming conditions," Energy, Elsevier, vol. 36(7), pages 4385-4395.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ochoa, Aitor & Bilbao, Javier & Gayubo, Ana G. & Castaño, Pedro, 2020. "Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Chen, Guanyi & Tao, Junyu & Liu, Caixia & Yan, Beibei & Li, Wanqing & Li, Xiangping, 2017. "Hydrogen production via acetic acid steam reforming: A critical review on catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1091-1098.
    3. Resende, K.A. & de Souza, P.M. & Noronha, F.B. & Hori, C.E., 2019. "Thermodynamic analysis of phenol hydrodeoxygenation reaction system in gas phase," Renewable Energy, Elsevier, vol. 136(C), pages 365-372.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Guanyi & Tao, Junyu & Liu, Caixia & Yan, Beibei & Li, Wanqing & Li, Xiangping, 2017. "Hydrogen production via acetic acid steam reforming: A critical review on catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1091-1098.
    2. Paraskevi Panagiotopoulou & Christina Papadopoulou & Haris Matralis & Xenophon Verykios, 2014. "Production of renewable hydrogen by reformation of biofuels," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(3), pages 231-253, May.
    3. Remón, J. & Arcelus-Arrillaga, P. & García, L. & Arauzo, J., 2018. "Simultaneous production of gaseous and liquid biofuels from the synergetic co-valorisation of bio-oil and crude glycerol in supercritical water," Applied Energy, Elsevier, vol. 228(C), pages 2275-2287.
    4. Ochoa, Aitor & Bilbao, Javier & Gayubo, Ana G. & Castaño, Pedro, 2020. "Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    6. Zhu, Min & Chen, Shiyi & Soomro, Ahsanullah & Hu, Jun & Sun, Zhao & Ma, Shiwei & Xiang, Wenguo, 2018. "Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation," Applied Energy, Elsevier, vol. 225(C), pages 912-921.
    7. Pang, Yunji & Wu, Yuting & Chen, Yisheng & Luo, Fuliang & Chen, Junjun, 2020. "Degradation effect of Ce/Al2O3 catalyst on pyrolysis volatility of pine," Renewable Energy, Elsevier, vol. 162(C), pages 134-143.
    8. Pravakar Mohanty & Kamal K. Pant & Ritesh Mittal, 2015. "Hydrogen generation from biomass materials: challenges and opportunities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(2), pages 139-155, March.
    9. Yang, Ren-Xuan & Wu, Shan-Luo & Chuang, Kui-Hao & Wey, Ming-Yen, 2020. "Co-production of carbon nanotubes and hydrogen from waste plastic gasification in a two-stage fluidized catalytic bed," Renewable Energy, Elsevier, vol. 159(C), pages 10-22.
    10. Sharma, Yogesh Chandra & Kumar, Ashutosh & Prasad, Ram & Upadhyay, Siddh Nath, 2017. "Ethanol steam reforming for hydrogen production: Latest and effective catalyst modification strategies to minimize carbonaceous deactivation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 89-103.
    11. Hu, Xun & Gholizadeh, Mortaza, 2020. "Progress of the applications of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part I," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1427-1445.
    13. Xie, Huaqing & Li, Rongquan & Yu, Zhenyu & Wang, Zhengyu & Yu, Qingbo & Qin, Qin, 2020. "Combined steam/dry reforming of bio-oil for H2/CO syngas production with blast furnace slag as heat carrier," Energy, Elsevier, vol. 200(C).
    14. Nasir Uddin, Md. & Daud, W.M.A. Wan & Abbas, Hazim F., 2013. "Potential hydrogen and non-condensable gases production from biomass pyrolysis: Insights into the process variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 204-224.
    15. Li, Lin & Tang, Dawei & Song, Yongchen & Jiang, Bo & Zhang, Qian, 2018. "Hydrogen production from ethanol steam reforming on Ni-Ce/MMT catalysts," Energy, Elsevier, vol. 149(C), pages 937-943.
    16. No, Soo-Young, 2014. "Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1108-1125.
    17. Nabgan, Walid & Tuan Abdullah, Tuan Amran & Mat, Ramli & Nabgan, Bahador & Gambo, Yahya & Ibrahim, Maryam & Ahmad, Arshad & Jalil, Aishah Abdul & Triwahyono, Sugeng & Saeh, Ibrahim, 2017. "Renewable hydrogen production from bio-oil derivative via catalytic steam reforming: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 347-357.
    18. Butler, Eoin & Devlin, Ger & Meier, Dietrich & McDonnell, Kevin, 2011. "A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4171-4186.
    19. Wenran Gao & Hui Li & Karnowo & Bing Song & Shu Zhang, 2020. "Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids," Energies, MDPI, vol. 13(22), pages 1-15, November.
    20. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:80:y:2015:i:c:p:166-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.