IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v71y2014icp276-285.html
   My bibliography  Save this article

Performance of an anaerobic fluidized bed bioreactor (AnFBR) for digestion of primary municipal wastewater treatment biosolids and bioethanol thin stillage

Author

Listed:
  • Andalib, Mehran
  • Elbeshbishy, Elsayed
  • Mustafa, Nizar
  • Hafez, Hisham
  • Nakhla, George
  • Zhu, Jesse

Abstract

The primary objective of this work was to investigate and compare the treatability of very high suspended solids with different biodegradable particulate fractions and COD fractionation, thin stillage (a by-product from the corn ethanol industry) as well as primary sludge from municipal wastewater treatment, using an anaerobic fluidized bed bioreactor (AnFBR) employing US Mesh 30 × 40 zeolite with a diameter of (dm) in the range of 425–610 μm and specific surface area (SSA) of 26.5 m2/g as the carrier media. Each experimental run lasted over a six-month period. Due to the long-term impact of accumulation of inert suspended solids in the AnFBR and potential active biomass washout leading to failure, treatability of high suspended-solid streams can be very challenging. Despite the very high strength of thin stillage and primary sludge with chemical oxygen demand of 130,000 mg TCOD/L and 42,000 mg TCOD/L respectively and suspended solids of 47,000 mg TSS/L and 34,000 mg TSS/L, the AnFBR showed, up to 88% and 82% TCOD and 78% and 82% TSS removal efficiencies from thin stillage and primary sludge respectively at very high organic and solids loading rates (OLR and SLR) of 29 kg COD/m3 d and 9.5 kg COD/m3 d and 10.5 kg TSS/m3 d and 10.3 kg TSS/m3 d respectively at hydraulic retention time (HRT) of 3.5 and 4 days. Maximum methane production yields of up to 0.31LCH4/gCOD and 0.25LCH4/gCOD were achieved for thin stillage and primary sludge respectively corresponding to biogas production rate per reactor volume of 15.8 Lgas/Lreactor d and 1.22LCH4/Lreactord.

Suggested Citation

  • Andalib, Mehran & Elbeshbishy, Elsayed & Mustafa, Nizar & Hafez, Hisham & Nakhla, George & Zhu, Jesse, 2014. "Performance of an anaerobic fluidized bed bioreactor (AnFBR) for digestion of primary municipal wastewater treatment biosolids and bioethanol thin stillage," Renewable Energy, Elsevier, vol. 71(C), pages 276-285.
  • Handle: RePEc:eee:renene:v:71:y:2014:i:c:p:276-285
    DOI: 10.1016/j.renene.2014.05.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114003000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.05.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gómez, X. & Cuetos, M.J. & Cara, J. & Morán, A. & García, A.I., 2006. "Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes," Renewable Energy, Elsevier, vol. 31(12), pages 2017-2024.
    2. Fernández, N. & Montalvo, S. & Borja, R. & Guerrero, L. & Sánchez, E. & Cortés, I. & Colmenarejo, M.F. & Travieso, L. & Raposo, F., 2008. "Performance evaluation of an anaerobic fluidized bed reactor with natural zeolite as support material when treating high-strength distillery wastewater," Renewable Energy, Elsevier, vol. 33(11), pages 2458-2466.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
    2. Du, Jiliang & Chen, Le & Li, Jianan & Zuo, Ranan & Yang, Xiushan & Chen, Hongzhang & Zhuang, Xinshu & Tian, Shen, 2018. "High-solids ethanol fermentation with single-stage methane anaerobic digestion for maximizing bioenergy conversion from a C4 grass (Pennisetum purpereum)," Applied Energy, Elsevier, vol. 215(C), pages 437-443.
    3. Alessandra Cesaro & Vincenzo Belgiorno, 2015. "Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application," Energies, MDPI, vol. 8(8), pages 1-24, August.
    4. Chowdhury, M.M.I. & Nakhla, G. & Zhu, J., 2017. "Ultrasonically enhanced anaerobic digestion of thickened waste activated sludge using fluidized bed reactors," Applied Energy, Elsevier, vol. 204(C), pages 807-818.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jun & Xue, Qingwen & Guo, Ting & Mei, Zili & Long, Enshen & Wen, Qian & Huang, Wei & Luo, Tao & Huang, Ruyi, 2018. "A review on CFD simulating method for biogas fermentation material fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 64-73.
    2. Sanchez, M.E. & Otero, M. & Gómez, X. & Morán, A., 2009. "Thermogravimetric kinetic analysis of the combustion of biowastes," Renewable Energy, Elsevier, vol. 34(6), pages 1622-1627.
    3. Di Maria, Francesco & Sordi, Alessio & Cirulli, Giuseppe & Micale, Caterina, 2015. "Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time," Applied Energy, Elsevier, vol. 150(C), pages 9-14.
    4. Lindmark, Johan & Thorin, Eva & Bel Fdhila, Rebei & Dahlquist, Erik, 2014. "Effects of mixing on the result of anaerobic digestion: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1030-1047.
    5. Jegede, A.O. & Zeeman, G. & Bruning, H., 2019. "Evaluation of liquid and solid phase mixing in Chinese dome digesters using residence time distribution (RTD) technique," Renewable Energy, Elsevier, vol. 143(C), pages 501-511.
    6. Fernando Morante-Carballo & Néstor Montalván-Burbano & Paúl Carrión-Mero & Nathaly Espinoza-Santos, 2021. "Cation Exchange of Natural Zeolites: Worldwide Research," Sustainability, MDPI, vol. 13(14), pages 1-26, July.
    7. Spyridon Achinas & Yu Li & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "Biogas Potential from the Anaerobic Digestion of Potato Peels: Process Performance and Kinetics Evaluation," Energies, MDPI, vol. 12(12), pages 1-16, June.
    8. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    9. Ghanimeh, Sophia & Khalil, Charbel Abou & Stoecklein, Daniel & Kommasojula, Aditya & Ganapathysubramanian, Baskar, 2020. "Flow sculpting enabled anaerobic digester for energy recovery from low-solid content waste," Renewable Energy, Elsevier, vol. 154(C), pages 841-848.
    10. Leonzio, Grazia, 2019. "Fluid dynamic study of anaerobic digester: optimization of mixing and geometric configuration by using response surface methodology and factorial design," Renewable Energy, Elsevier, vol. 136(C), pages 769-780.
    11. KeChrist Obileke & Nwabunwanne Nwokolo & Golden Makaka & Patrick Mukumba & Helen Onyeaka, 2021. "Anaerobic digestion: Technology for biogas production as a source of renewable energy—A review," Energy & Environment, , vol. 32(2), pages 191-225, March.
    12. Gao, Xingbao & Liu, Xiao & Wang, Wei, 2016. "Biodegradation of particulate organics and its enhancement during anaerobic co-digestion of municipal biowaste and waste activated sludge," Renewable Energy, Elsevier, vol. 96(PB), pages 1086-1092.
    13. Singh, Buta & Szamosi, Zoltán & Siménfalvi, Zoltán, 2019. "State of the art on mixing in an anaerobic digester: A review," Renewable Energy, Elsevier, vol. 141(C), pages 922-936.
    14. Owamah, H.I. & Alfa, M.I. & Dahunsi, S.O., 2014. "Optimization of biogas from chicken droppings with Cymbopogon citratus," Renewable Energy, Elsevier, vol. 68(C), pages 366-371.
    15. Chowdhury, M.M.I. & Nakhla, G. & Zhu, J., 2017. "Ultrasonically enhanced anaerobic digestion of thickened waste activated sludge using fluidized bed reactors," Applied Energy, Elsevier, vol. 204(C), pages 807-818.
    16. Di Maria, Francesco & Micale, Caterina & Contini, Stefano, 2016. "Energetic and environmental sustainability of the co-digestion of sludge with bio-waste in a life cycle perspective," Applied Energy, Elsevier, vol. 171(C), pages 67-76.
    17. Choong, Yee Yaw & Chou, Kian Weng & Norli, Ismail, 2018. "Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2993-3006.
    18. Di Maria, Francesco & Micale, Caterina & Sordi, Alessio, 2014. "Electrical energy production from the integrated aerobic-anaerobic treatment of organic waste by ORC," Renewable Energy, Elsevier, vol. 66(C), pages 461-467.
    19. Abiodun O. Jegede & Grietje Zeeman & Harry Bruning, 2019. "Development of an Optimised Chinese Dome Digester Enables Smaller Reactor Volumes; Pilot Scale Performance," Energies, MDPI, vol. 12(11), pages 1-15, June.
    20. Di Maria, Francesco & Micale, Caterina, 2017. "Energetic potential of the co-digestion of sludge with bio-waste in existing wastewater treatment plant digesters: A case study of an Italian province," Energy, Elsevier, vol. 136(C), pages 110-116.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:71:y:2014:i:c:p:276-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.