IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v69y2014icp260-270.html
   My bibliography  Save this article

Comparative analysis of tertiary control systems for smart grids using the Flex Street model

Author

Listed:
  • Claessen, F.N.
  • Claessens, B.
  • Hommelberg, M.P.F.
  • Molderink, A.
  • Bakker, V.
  • Toersche, H.A.
  • van den Broek, M.A.

Abstract

Various smart grid control systems have been developed with different architectures. Comparison helps developers identify their strong and weak points. A three-step analysis method is proposed to facilitate the comparison of independently developed control systems. In the first step, a microgrid model is created describing demand and supply patterns of controllable and non-controllable devices (Flex Street). In the second step, a version of Flex Street is used to design a case, with a given control objective and key performance indicators. In the last step, simulations of different control systems are performed and their results are analysed and compared. The Flex Street model describes a diverse set of households based on realistic data. Furthermore, its bottom-up modelling approach makes it a flexible tool for designing cases. Currently, three cases with peak-shaving objectives are developed based on scenarios of the Dutch residential sector, specifying various penetration rates of renewable and controllable devices.

Suggested Citation

  • Claessen, F.N. & Claessens, B. & Hommelberg, M.P.F. & Molderink, A. & Bakker, V. & Toersche, H.A. & van den Broek, M.A., 2014. "Comparative analysis of tertiary control systems for smart grids using the Flex Street model," Renewable Energy, Elsevier, vol. 69(C), pages 260-270.
  • Handle: RePEc:eee:renene:v:69:y:2014:i:c:p:260-270
    DOI: 10.1016/j.renene.2014.03.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114002018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.03.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zahedi, A., 2011. "Maximizing solar PV energy penetration using energy storage technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 866-870, January.
    2. Zamora, Ramon & Srivastava, Anurag K., 2010. "Controls for microgrids with storage: Review, challenges, and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2009-2018, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mart van der Kam & Annemijn Peters & Wilfried van Sark & Floor Alkemade, 2019. "Agent-Based Modelling of Charging Behaviour of Electric Vehicle Drivers," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 22(4), pages 1-7.
    2. Thijs Klauw & Marco E. T. Gerards & Johann L. Hurink, 2017. "Resource allocation problems in decentralized energy management," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 749-773, July.
    3. van der Kam, Mart & van Sark, Wilfried, 2015. "Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study," Applied Energy, Elsevier, vol. 152(C), pages 20-30.
    4. Hoogvliet, T.W. & Litjens, G.B.M.A. & van Sark, W.G.J.H.M., 2017. "Provision of regulating- and reserve power by electric vehicle owners in the Dutch market," Applied Energy, Elsevier, vol. 190(C), pages 1008-1019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colmenar-Santos, Antonio & Campíñez-Romero, Severo & Pérez-Molina, Clara & Castro-Gil, Manuel, 2012. "Profitability analysis of grid-connected photovoltaic facilities for household electricity self-sufficiency," Energy Policy, Elsevier, vol. 51(C), pages 749-764.
    2. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    3. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    4. Mostafa Ahmed & Mohamed Abdelrahem & Ibrahim Harbi & Ralph Kennel, 2020. "An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems," Energies, MDPI, vol. 13(24), pages 1-25, December.
    5. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    6. Wu, Yubo & Du, Jianqiang & Liu, Guangxin & Ma, Danzhu & Jia, Fengrui & Klemeš, Jiří Jaromír & Wang, Jin, 2022. "A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating," Renewable Energy, Elsevier, vol. 185(C), pages 1034-1061.
    7. Bouzid, Allal M. & Guerrero, Josep M. & Cheriti, Ahmed & Bouhamida, Mohamed & Sicard, Pierre & Benghanem, Mustapha, 2015. "A survey on control of electric power distributed generation systems for microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 751-766.
    8. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    9. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    10. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    11. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2015. "A detailed model for the optimal management of a multigood microgrid," Applied Energy, Elsevier, vol. 154(C), pages 862-873.
    12. Byuk-Keun Jo & Gilsoo Jang, 2019. "An Evaluation of the Effect on the Expansion of Photovoltaic Power Generation According to Renewable Energy Certificates on Energy Storage Systems: A Case Study of the Korean Renewable Energy Market," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    13. Gustavo Fernandes de Negreiros & Fábio Xavier Lobo & Igor Cavalcante Torres & Chigueru Tiba, 2023. "Impact on Voltage Regulation in Medium Voltage Distribution Networks Due to the Insertion of Photovoltaic Generators," Energies, MDPI, vol. 16(3), pages 1-18, January.
    14. Hare, James & Shi, Xiaofang & Gupta, Shalabh & Bazzi, Ali, 2016. "Fault diagnostics in smart micro-grids: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1114-1124.
    15. Colak, Ilhami & Kabalci, Ersan & Fulli, Gianluca & Lazarou, Stavros, 2015. "A survey on the contributions of power electronics to smart grid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 562-579.
    16. Ngoc Bao Lai & Kyeong-Hwa Kim, 2016. "An Improved Current Control Strategy for a Grid-Connected Inverter under Distorted Grid Conditions," Energies, MDPI, vol. 9(3), pages 1-23, March.
    17. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Yousef Asadi & Mohsen Eskandari & Milad Mansouri & Andrey V. Savkin & Erum Pathan, 2022. "Frequency and Voltage Control Techniques through Inverter-Interfaced Distributed Energy Resources in Microgrids: A Review," Energies, MDPI, vol. 15(22), pages 1-29, November.
    19. Arash Khalilnejad & Aditya Sundararajan & Alireza Abbaspour & Arif Sarwat, 2016. "Optimal Operation of Combined Photovoltaic Electrolyzer Systems," Energies, MDPI, vol. 9(5), pages 1-12, April.
    20. Furuoka, Fumitaka, 2017. "Renewable electricity consumption and economic development: New findings from the Baltic countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 450-463.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:69:y:2014:i:c:p:260-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.