IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v39y2017i3d10.1007_s00291-017-0474-2.html
   My bibliography  Save this article

Resource allocation problems in decentralized energy management

Author

Listed:
  • Thijs Klauw

    (University of Twente)

  • Marco E. T. Gerards

    (University of Twente)

  • Johann L. Hurink

    (University of Twente)

Abstract

Changes in our electricity supply chain are causing a paradigm shift from centralized control towards decentralized energy management. Within the framework of decentralized energy management, devices that offer flexibility in their load profile play an important role. These devices schedule their flexible load profile based on steering signals received from centralized controllers. The problem of finding optimal device schedules based on the received steering signals falls into the framework of resource allocation problems. We study an extension of the traditional problems studied within resource allocation and prove that a divide-and-conquer strategy gives an optimal solution for the considered extension. This leads to an efficient recursive algorithm, with quadratic complexity in the practically relevant case of quadratic objective functions. Furthermore, we study discrete variants of two problems common in decentralized energy management. We show that these problems are NP-hard and formulate natural relaxations of both considered discrete problems that we solve efficiently. Finally, we show that the solutions to the natural relaxations closely resemble solutions to the original, hard problems.

Suggested Citation

  • Thijs Klauw & Marco E. T. Gerards & Johann L. Hurink, 2017. "Resource allocation problems in decentralized energy management," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 749-773, July.
  • Handle: RePEc:spr:orspec:v:39:y:2017:i:3:d:10.1007_s00291-017-0474-2
    DOI: 10.1007/s00291-017-0474-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-017-0474-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-017-0474-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antimo Barbato & Antonio Capone, 2014. "Optimization Models and Methods for Demand-Side Management of Residential Users: A Survey," Energies, MDPI, vol. 7(9), pages 1-38, September.
    2. Claessen, F.N. & Claessens, B. & Hommelberg, M.P.F. & Molderink, A. & Bakker, V. & Toersche, H.A. & van den Broek, M.A., 2014. "Comparative analysis of tertiary control systems for smart grids using the Flex Street model," Renewable Energy, Elsevier, vol. 69(C), pages 260-270.
    3. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    4. Jochen Gönsch & Michael Hassler, 2016. "Sell or store? An ADP approach to marketing renewable energy," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 633-660, July.
    5. Patriksson, Michael & Strömberg, Christoffer, 2015. "Algorithms for the continuous nonlinear resource allocation problem—New implementations and numerical studies," European Journal of Operational Research, Elsevier, vol. 243(3), pages 703-722.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Finnah, Benedikt & Gönsch, Jochen, 2021. "Optimizing trading decisions of wind power plants with hybrid energy storage systems using backwards approximate dynamic programming," International Journal of Production Economics, Elsevier, vol. 238(C).
    2. Homan, Bart & ten Kortenaar, Marnix V. & Hurink, Johann L. & Smit, Gerard J.M., 2019. "A realistic model for battery state of charge prediction in energy management simulation tools," Energy, Elsevier, vol. 171(C), pages 205-217.
    3. Gijs J. H. de Goeijen & Gerard J. M. Smit & Johann L. Hurink, 2017. "Improving an Integer Linear Programming Model of an Ecovat Buffer by Adding Long-Term Planning," Energies, MDPI, vol. 10(12), pages 1-18, December.
    4. Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.
    5. Zeyang Wu & Kameng Nip & Qie He, 2021. "A New Combinatorial Algorithm for Separable Convex Resource Allocation with Nested Bound Constraints," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1197-1212, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jungho Park & Hadi El-Amine & Nevin Mutlu, 2021. "An Exact Algorithm for Large-Scale Continuous Nonlinear Resource Allocation Problems with Minimax Regret Objectives," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1213-1228, July.
    2. Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.
    3. Hsin-Min Sun & Ruey-Lin Sheu, 2019. "Minimum variance allocation among constrained intervals," Journal of Global Optimization, Springer, vol. 74(1), pages 21-44, May.
    4. Marco E. T. Gerards & Johann L. Hurink, 2016. "Robust Peak-Shaving for a Neighborhood with Electric Vehicles," Energies, MDPI, vol. 9(8), pages 1-16, July.
    5. ten Eikelder, S.C.M. & van Amerongen, J.H.M., 2023. "Resource allocation problems with expensive function evaluations," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1170-1185.
    6. Torrealba, E.M.R. & Silva, J.G. & Matioli, L.C. & Kolossoski, O. & Santos, P.S.M., 2022. "Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 46-59.
    7. Hoto, R.S.V. & Matioli, L.C. & Santos, P.S.M., 2020. "A penalty algorithm for solving convex separable knapsack problems," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    8. Zeyang Wu & Kameng Nip & Qie He, 2021. "A New Combinatorial Algorithm for Separable Convex Resource Allocation with Nested Bound Constraints," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1197-1212, July.
    9. Finnah, Benedikt & Gönsch, Jochen, 2021. "Optimizing trading decisions of wind power plants with hybrid energy storage systems using backwards approximate dynamic programming," International Journal of Production Economics, Elsevier, vol. 238(C).
    10. Chernonog, Tatyana & Goldberg, Noam, 2018. "On the multi-product newsvendor with bounded demand distributions," International Journal of Production Economics, Elsevier, vol. 203(C), pages 38-47.
    11. Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
    12. Simona-Vasilica Oprea & Adela Bâra & Adriana Reveiu, 2018. "Informatics Solution for Energy Efficiency Improvement and Consumption Management of Householders," Energies, MDPI, vol. 11(1), pages 1-31, January.
    13. Kenneth David Strang, 2012. "Man versus math: Behaviorist exploration of post-crisis non-banking asset management," Journal of Asset Management, Palgrave Macmillan, vol. 13(5), pages 348-367, October.
    14. Muhammad Riaz & Aamir Hanif & Haris Masood & Muhammad Attique Khan & Kamran Afaq & Byeong-Gwon Kang & Yunyoung Nam, 2021. "An Optimal Power Flow Solution of a System Integrated with Renewable Sources Using a Hybrid Optimizer," Sustainability, MDPI, vol. 13(23), pages 1-12, December.
    15. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    16. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    17. Lee, Zu-Hsu & Deng, Shiming & Lin, Beixin & Yang, James G.S., 2010. "Decision model and analysis for investment interest expense deduction and allocation," European Journal of Operational Research, Elsevier, vol. 200(1), pages 268-280, January.
    18. Christopher Dance & Alexei Gaivoronski, 2012. "Stochastic optimization for real time service capacity allocation under random service demand," Annals of Operations Research, Springer, vol. 193(1), pages 221-253, March.
    19. Finnah, Benedikt & Gönsch, Jochen & Ziel, Florian, 2022. "Integrated day-ahead and intraday self-schedule bidding for energy storage systems using approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 301(2), pages 726-746.
    20. Zhang, Sheng & Huang, Pei & Sun, Yongjun, 2016. "A multi-criterion renewable energy system design optimization for net zero energy buildings under uncertainties," Energy, Elsevier, vol. 94(C), pages 654-665.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:39:y:2017:i:3:d:10.1007_s00291-017-0474-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.