IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i5p1523-1528.html

Electrical energy from carbohydrate oxidation during viologen-catalyzed O2-oxidation: Mechanistic insights

Author

Listed:
  • Watt, Gerald D.
  • Hansen, Dane
  • Dodson, Daniel
  • Andrus, Merritt
  • Wheeler, Dean

Abstract

Catalytic oxidation of carbohydrates by oxygen using various viologens under mild conditions was recently shown to occur at high efficiency with formate and carbonate formed as products. However, high efficiency was only achieved at viologen/carbohydrate ratios >10. The use of such high catalyst ratios is undesirable and a mechanistic study was initiated to better understand how catalytic efficiency is influenced by catalyst ratio. The results suggest that the dipositive viologen reacts with the enediol form of the carbohydrate, initiating carbohydrate oxidation with subsequent reduction of the viologen to the radical cation form. The latter is then oxidized by air or by current collecting electrodes when the reaction is conducted in a fuel cell. If the viologen/carbohydrate ratio is low, electron transfer from the carbohydrate to the oxidized form of the viologen becomes limiting and the carbohydrate undergoing oxidation rearranges into unreactive intermediates such as carboxylic acids, and alcohols. However, at high ratios, excess viologen more efficiently oxidizes the carbohydrate and minimizes formation of unreactive intermediates. Viologen polymers were more efficient than an equivalent concentration of monomers, suggesting that the higher localized concentration in polymeric viologen acts to efficiently oxidize carbohydrates and simulates high viologen/carbohydrate ratios. The use of viologen films on electrodes or conducting viologen polymers should facilitate use of carbohydrates for electricity production in fuel cells.

Suggested Citation

  • Watt, Gerald D. & Hansen, Dane & Dodson, Daniel & Andrus, Merritt & Wheeler, Dean, 2011. "Electrical energy from carbohydrate oxidation during viologen-catalyzed O2-oxidation: Mechanistic insights," Renewable Energy, Elsevier, vol. 36(5), pages 1523-1528.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:5:p:1523-1528
    DOI: 10.1016/j.renene.2010.10.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110004878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.10.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yuriy Román-Leshkov & Christopher J. Barrett & Zhen Y. Liu & James A. Dumesic, 2007. "Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates," Nature, Nature, vol. 447(7147), pages 982-985, June.
    2. Larsson, Ragnar & Folkesson, Börje & Spaziante, Placido M. & Veerasai, Waret & Exell, Robert H.B., 2006. "A high-power carbohydrate fuel cell," Renewable Energy, Elsevier, vol. 31(4), pages 549-552.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bahari, Meisam & Malmberg, Michael A. & Brown, Daniel M. & Hadi Nazari, S. & Lewis, Randy S. & Watt, Gerald D. & Harb, John N., 2020. "Oxidation efficiency of glucose using viologen mediators for glucose fuel cell applications with non-precious anodes," Applied Energy, Elsevier, vol. 261(C).
    2. Watt, G.D., 2014. "A new future for carbohydrate fuel cells," Renewable Energy, Elsevier, vol. 72(C), pages 99-104.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Fengli & Weng, Jushi & Ding, Jiajing & Zhao, Zhiyan & Qin, Lizhen & Xia, Feifei, 2020. "Effective conversion of saccharides into hydroxymethylfurfural catalyzed by a natural clay, attapulgite," Renewable Energy, Elsevier, vol. 151(C), pages 829-836.
    2. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    3. Tekin, Kubilay & Karagöz, Selhan & Bektaş, Sema, 2014. "A review of hydrothermal biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 673-687.
    4. Zheng, Zunqing & Wang, XiaoFeng & Zhong, Xiaofan & Hu, Bin & Liu, Haifeng & Yao, Mingfa, 2016. "Experimental study on the combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2,5-dimethylfuran on a diesel engine," Energy, Elsevier, vol. 115(P1), pages 539-549.
    5. Qian, Yong & Zhu, Lifeng & Wang, Yue & Lu, Xingcai, 2015. "Recent progress in the development of biofuel 2,5-dimethylfuran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 633-646.
    6. Liu, Haifeng & Xu, Jia & Zheng, Zunqing & Li, Shanju & Yao, Mingfa, 2013. "Effects of fuel properties on combustion and emissions under both conventional and low temperature combustion mode fueling 2,5-dimethylfuran/diesel blends," Energy, Elsevier, vol. 62(C), pages 215-223.
    7. Tran, Luc Sy & Sirjean, Baptiste & Glaude, Pierre-Alexandre & Fournet, René & Battin-Leclerc, Frédérique, 2012. "Progress in detailed kinetic modeling of the combustion of oxygenated components of biofuels," Energy, Elsevier, vol. 43(1), pages 4-18.
    8. Bao, Xiuchao & Jiang, Yizhou & Xu, Hongming & Wang, Chongming & Lattimore, Thomas & Tang, Lan, 2017. "Laminar flame characteristics of cyclopentanone at elevated temperatures," Applied Energy, Elsevier, vol. 195(C), pages 671-680.
    9. Nguyen, Long Thanh & Doan, Vinh Thanh Chau & Nguyen, Trinh Hao & Phan, Ha Bich & Pham, Viet Van & Dang, Chinh Van & Tran, Phuong Hoang, 2024. "One-pot aerobic conversion of fructose to 2,5-diformylfuran using silver-decorated carbon materials," Renewable Energy, Elsevier, vol. 221(C).
    10. Yu, Yixuan & Liu, Huai & Zhang, Junhua & Zhang, Heng & Sun, Yong & Peng, Lincai, 2023. "Highly efficient, amorphous bimetal Ni-Fe borides-catalyzed hydrogenolysis of 5-hydroxymethylfurfural into 2,5-dimethylfuran," Renewable Energy, Elsevier, vol. 209(C), pages 453-461.
    11. Watt, G.D., 2014. "A new future for carbohydrate fuel cells," Renewable Energy, Elsevier, vol. 72(C), pages 99-104.
    12. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Mazen A. Eldeeb & Benjamin Akih-Kumgeh, 2018. "Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels," Energies, MDPI, vol. 11(3), pages 1-47, February.
    14. Chen, Guisheng & Shen, Yinggang & Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng, 2013. "Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran–diesel, n-butanol–diesel and gasoline–diesel blends," Energy, Elsevier, vol. 54(C), pages 333-342.
    15. Harish, B.S & Janaki Ramaiah, M. & Babu Uppuluri, Kiran, 2015. "Bioengineering strategies on catalysis for the effective production of renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 533-547.
    16. Ouyang, Denghao & Wang, Fangqian & Hong, Jinpeng & Gao, Daihong & Zhao, Xuebing, 2021. "Ferricyanide and vanadyl (V) mediated electron transfer for converting lignin to electricity by liquid flow fuel cell with power density reaching 200 mW/cm2," Applied Energy, Elsevier, vol. 304(C).
    17. Ya, Yuchen & Nie, Xiaokang & Han, Weiwei & Xiang, Longkai & Gu, Mingyan & Chu, Huaqiang, 2020. "Effects of 2, 5–dimethylfuran/ethanol addition on soot formation in n-heptane/iso-octane/air coflow diffusion flames," Energy, Elsevier, vol. 210(C).
    18. Xu, Nan & Gong, Jing & Huang, Zuohua, 2016. "Review on the production methods and fundamental combustion characteristics of furan derivatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1189-1211.
    19. Read, Adam & Hansen, Dane & Aloi, Sekoti & Pitt, William G. & Wheeler, Dean R. & Watt, Gerald D., 2012. "Monoalkyl viologens are effective carbohydrate O2-oxidation catalysts for electrical energy generation by fuel cells," Renewable Energy, Elsevier, vol. 46(C), pages 218-223.
    20. Daniel, Ritchie & Xu, Hongming & Wang, Chongming & Richardson, Dave & Shuai, Shijin, 2013. "Gaseous and particulate matter emissions of biofuel blends in dual-injection compared to direct-injection and port injection," Applied Energy, Elsevier, vol. 105(C), pages 252-261.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:5:p:1523-1528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.