IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i5p1421-1430.html
   My bibliography  Save this article

Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system

Author

Listed:
  • Zaragoza, Jordi
  • Pou, Josep
  • Arias, Antoni
  • Spiteri, Cyril
  • Robles, Eider
  • Ceballos, Salvador

Abstract

This paper analyzes and compares different control tuning strategies for a variable speed wind energy conversion system (WECS) based on a permanent-magnet synchronous generator (PMSG). The aerodynamics of the wind turbine (WT) and a PMSG have been modeled. The control strategy used in this research is composed of three regulators, which may be based on either linear or nonlinear controllers. In this analysis, proportional-integral (PI) linear controllers have been used. Two different tuning strategies are analyzed and compared. The main goal is to enhance the overall performance by achieving a low sensitivity to disturbances and minimal overshoot under variable operating conditions. Finally, the results have been verified by an experimental WECS laboratory prototype.

Suggested Citation

  • Zaragoza, Jordi & Pou, Josep & Arias, Antoni & Spiteri, Cyril & Robles, Eider & Ceballos, Salvador, 2011. "Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system," Renewable Energy, Elsevier, vol. 36(5), pages 1421-1430.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:5:p:1421-1430
    DOI: 10.1016/j.renene.2010.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110005045
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cadenas, Erasmo & Rivera, Wilfrido, 2009. "Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks," Renewable Energy, Elsevier, vol. 34(1), pages 274-278.
    2. Mohamed, Amal Z. & Eskander, Mona N. & Ghali, Fadia A., 2001. "Fuzzy logic control based maximum power tracking of a wind energy system," Renewable Energy, Elsevier, vol. 23(2), pages 235-245.
    3. López, P. & Velo, R. & Maseda, F., 2008. "Effect of direction on wind speed estimation in complex terrain using neural networks," Renewable Energy, Elsevier, vol. 33(10), pages 2266-2272.
    4. Jauch, Clemens & Islam, Syed M. & Sørensen, Poul & Bak Jensen, Birgitte, 2007. "Design of a wind turbine pitch angle controller for power system stabilisation," Renewable Energy, Elsevier, vol. 32(14), pages 2334-2349.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Golnary, Farshad & Moradi, Hamed, 2018. "Design and comparison of quasi continuous sliding mode control with feedback linearization for a large scale wind turbine with wind speed estimation," Renewable Energy, Elsevier, vol. 127(C), pages 495-508.
    2. Cuauhtemoc Acosta Lúa & Domenico Bianchi & Salvador Martín Baragaño & Mario Di Ferdinando & Stefano Di Gennaro, 2023. "Robust Nonlinear Control of a Wind Turbine with a Permanent Magnet Synchronous Generator," Energies, MDPI, vol. 16(18), pages 1-19, September.
    3. El-Baklish, Shaimaa K. & El-Badawy, Ayman A. & Frison, Gianluca & Diehl, Moritz, 2020. "Nonlinear model predictive pitch control of aero-elastic wind turbine blades," Renewable Energy, Elsevier, vol. 161(C), pages 777-791.
    4. Song, Dongran & Liu, Junbo & Yang, Jian & Su, Mei & Wang, Yun & Yang, Xuebing & Huang, Lingxiang & Joo, Young Hoon, 2020. "Optimal design of wind turbines on high-altitude sites based on improved Yin-Yang pair optimization," Energy, Elsevier, vol. 193(C).
    5. Mensou, Sara & Essadki, Ahmed & Nasser, Tamou & Idrissi, Badre Bououlid & Ben Tarla, Lahssan, 2020. "Dspace DS1104 implementation of a robust nonlinear controller applied for DFIG driven by wind turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 1759-1771.
    6. Martinez, Fernando & Herrero, L. Carlos & de Pablo, Santiago, 2014. "Open loop wind turbine emulator," Renewable Energy, Elsevier, vol. 63(C), pages 212-221.
    7. Maheshwari, Zeel & Kengne, Kamgang & Bhat, Omkar, 2023. "A comprehensive review on wind turbine emulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    8. Mercado-Vargas, M.J. & Gómez-Lorente, D. & Rabaza, O. & Alameda-Hernandez, E., 2015. "Aggregated models of permanent magnet synchronous generators wind farms," Renewable Energy, Elsevier, vol. 83(C), pages 1287-1298.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Sungmoon & Kwon, Soon-Duck, 2013. "Weighted error functions in artificial neural networks for improved wind energy potential estimation," Applied Energy, Elsevier, vol. 111(C), pages 778-790.
    2. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    3. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    4. Méndez-Gordillo, Alma Rosa & Cadenas, Erasmo, 2021. "Wind speed forecasting by the extraction of the multifractal patterns of time series through the multiplicative cascade technique," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    5. Philippopoulos, Kostas & Deligiorgi, Despina, 2012. "Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography," Renewable Energy, Elsevier, vol. 38(1), pages 75-82.
    6. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    7. Koo, Junmo & Han, Gwon Deok & Choi, Hyung Jong & Shim, Joon Hyung, 2015. "Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea," Energy, Elsevier, vol. 93(P2), pages 1296-1302.
    8. Cheng-Yu Ho & Ke-Sheng Cheng & Chi-Hang Ang, 2023. "Utilizing the Random Forest Method for Short-Term Wind Speed Forecasting in the Coastal Area of Central Taiwan," Energies, MDPI, vol. 16(3), pages 1-18, January.
    9. Ganjefar, Soheil & Ghassemi, Ali Akbar & Ahmadi, Mohamad Mehdi, 2014. "Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network," Energy, Elsevier, vol. 67(C), pages 444-453.
    10. Anto Anbarasu Yesudhas & Young Hoon Joo & Seong Ryong Lee, 2022. "Reference Model Adaptive Control Scheme on PMVG-Based WECS for MPPT under a Real Wind Speed," Energies, MDPI, vol. 15(9), pages 1-17, April.
    11. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    12. Wen, Songkang & Li, Yanting & Su, Yan, 2022. "A new hybrid model for power forecasting of a wind farm using spatial–temporal correlations," Renewable Energy, Elsevier, vol. 198(C), pages 155-168.
    13. Wen, Hao & Sang, Song & Qiu, Chenhui & Du, Xiangrui & Zhu, Xiao & Shi, Qian, 2019. "A new optimization method of wind turbine airfoil performance based on Bessel equation and GABP artificial neural network," Energy, Elsevier, vol. 187(C).
    14. Zhang, Chi & Wei, Haikun & Zhao, Junsheng & Liu, Tianhong & Zhu, Tingting & Zhang, Kanjian, 2016. "Short-term wind speed forecasting using empirical mode decomposition and feature selection," Renewable Energy, Elsevier, vol. 96(PA), pages 727-737.
    15. Domínguez-García, José Luis & Gomis-Bellmunt, Oriol & Bianchi, Fernando D. & Sumper, Andreas, 2012. "Power oscillation damping supported by wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4994-5006.
    16. Hossain, M.J. & Pota, H.R. & Ramos, R.A., 2011. "Robust STATCOM control for the stabilisation of fixed-speed wind turbines during low voltages," Renewable Energy, Elsevier, vol. 36(11), pages 2897-2905.
    17. Jiani Heng & Chen Wang & Xuejing Zhao & Liye Xiao, 2016. "Research and Application Based on Adaptive Boosting Strategy and Modified CGFPA Algorithm: A Case Study for Wind Speed Forecasting," Sustainability, MDPI, vol. 8(3), pages 1-25, March.
    18. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    19. Wu, Jie & Li, Na & Zhao, Yan & Wang, Jujie, 2022. "Usage of correlation analysis and hypothesis test in optimizing the gated recurrent unit network for wind speed forecasting," Energy, Elsevier, vol. 242(C).
    20. He, Qingqing & Wang, Jianzhou & Lu, Haiyan, 2018. "A hybrid system for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 226(C), pages 756-771.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:5:p:1421-1430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.