IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i1p265-271.html
   My bibliography  Save this article

A study of the ventilation performance of a series of connected solar chimneys integrated with building

Author

Listed:
  • Wei, Du
  • Qirong, Yang
  • Jincui, Zhang

Abstract

A series of connected solar chimneys consisting of an inclined section on the roof and a vertical section near the south wall was studied in a typical two-floor house. Specifically, the effects of the total length and width of the chimney, the inclined angle of the second floor inlet, the length ratio of the vertical to inclined section, and the chimney inclined angle on the chimney ventilation performance were numerically studied. The results showed that the ventilation was improved with the increase of the total chimney length. The air mass flow rate increased firstly then decreased with the chimney width, indicating that there existed an optimal length to width ratio, which was 12:1. Similarly, the mass flow rate increased firstly then decreased with the inclined angle of the second floor chimney inlet. The optimal inclined angle was found to be 4° from the horizontal. At the fixed total chimney length, the air mass flow rate also varied with the length ratio of the vertical to inclined section, and the maximum mass flow rate can be achieved by choosing the longest vertical length within the restriction of the building code. Finally, with the increase of chimney inclined angle, the velocity distribution inside the chimney was improved and the air flow rate increased. These results may provide the theoretical basis for the practical solar building design.

Suggested Citation

  • Wei, Du & Qirong, Yang & Jincui, Zhang, 2011. "A study of the ventilation performance of a series of connected solar chimneys integrated with building," Renewable Energy, Elsevier, vol. 36(1), pages 265-271.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:1:p:265-271
    DOI: 10.1016/j.renene.2010.06.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110002867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.06.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harris, D.J. & Helwig, N., 2007. "Solar chimney and building ventilation," Applied Energy, Elsevier, vol. 84(2), pages 135-146, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khosravi, Mohsen & Fazelpour, Farivar & Rosen, Marc A., 2019. "Improved application of a solar chimney concept in a two-story building: An enhanced geometry through a numerical approach," Renewable Energy, Elsevier, vol. 143(C), pages 569-585.
    2. DeBlois, Justin C. & Bilec, Melissa M. & Schaefer, Laura A., 2013. "Design and zonal building energy modeling of a roof integrated solar chimney," Renewable Energy, Elsevier, vol. 52(C), pages 241-250.
    3. Siphiwe Mdlalose & Sipho Sibanda & Tilahun Workneh & Mark Laing, 2022. "Innovative Low-Cost Naturally Ventilated Maize Seed Storage System," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 8(1), pages 39-49, 01-2022.
    4. Mehrpooya, Mehdi & Shahsavan, Mohsen & Sharifzadeh, Mohammad Mehdi Moftakhari, 2016. "Modeling, energy and exergy analysis of solar chimney power plant-Tehran climate data case study," Energy, Elsevier, vol. 115(P1), pages 257-273.
    5. Sengupta, Ayan & Mishra, Dipti Prasad & Sarangi, Shailesh Kumar, 2022. "Computational performance analysis of a solar chimney using surface modifications of the absorber plate," Renewable Energy, Elsevier, vol. 185(C), pages 1095-1109.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tiantian & Yang, Hongxing, 2019. "Heat transfer pattern judgment and thermal performance enhancement of insulation air layers in building envelopes," Applied Energy, Elsevier, vol. 250(C), pages 834-845.
    2. Zhang, Tiantian & Yang, Hongxing, 2019. "Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades," Applied Energy, Elsevier, vol. 242(C), pages 107-120.
    3. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    4. Liu, Shuli & Li, Yongcai, 2015. "An experimental study on the thermal performance of a solar chimney without and with PCM," Renewable Energy, Elsevier, vol. 81(C), pages 338-346.
    5. Abdul Ghani Olabi & Nabila Shehata & Hussein M. Maghrabie & Lobna A. Heikal & Mohammad Ali Abdelkareem & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Enas Taha Sayed, 2022. "Progress in Solar Thermal Systems and Their Role in Achieving the Sustainable Development Goals," Energies, MDPI, vol. 15(24), pages 1-31, December.
    6. Khosravi, Mohsen & Fazelpour, Farivar & Rosen, Marc A., 2019. "Improved application of a solar chimney concept in a two-story building: An enhanced geometry through a numerical approach," Renewable Energy, Elsevier, vol. 143(C), pages 569-585.
    7. Zavala-Guillén, I. & Xamán, J. & Hernández-Pérez, I. & Hernández-Lopéz, I. & Gijón-Rivera, M. & Chávez, Y., 2018. "Numerical study of the optimum width of 2a diurnal double air-channel solar chimney," Energy, Elsevier, vol. 147(C), pages 403-417.
    8. Raul C. Ene & Silviana Brata & Iosif Boros & Remus Chendes & Daniel Dan, 2022. "Theoretical Study on the Effect of Parallel Air Chambers Embedded in Rockwool Panels on the Energy Consumption of a Low-Energy High School," Sustainability, MDPI, vol. 14(12), pages 1-25, June.
    9. Quesada, Guillermo & Rousse, Daniel & Dutil, Yvan & Badache, Messaoud & Hallé, Stéphane, 2012. "A comprehensive review of solar facades. Opaque solar facades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2820-2832.
    10. Imran, Ahmed Abdulnabi & Jalil, Jalal M. & Ahmed, Sabah T., 2015. "Induced flow for ventilation and cooling by a solar chimney," Renewable Energy, Elsevier, vol. 78(C), pages 236-244.
    11. Ren, Xiu-Hong & Wang, Lei & Liu, Run-Zhe & Wang, Lin & Zhao, Fu-Yun, 2021. "Thermal stack airflows inside the solar chimney with discrete heat sources: Reversal flow regime defined by chimney inclination and thermal Rayleigh number," Renewable Energy, Elsevier, vol. 163(C), pages 342-356.
    12. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    13. Aziz, Mohamed A. & Elsayed, Ahmed M., 2022. "Thermofluid effects of solar chimney geometry on performance parameters," Renewable Energy, Elsevier, vol. 200(C), pages 674-693.
    14. Chan, Hoy-Yen & Riffat, Saffa B. & Zhu, Jie, 2010. "Review of passive solar heating and cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 781-789, February.
    15. Emad Abdelsalam & Feras Kafiah & Malek Alkasrawi & Ismael Al-Hinti & Ahmad Azzam, 2020. "Economic Study of Solar Chimney Power-Water Distillation Plant (SCPWDP)," Energies, MDPI, vol. 13(11), pages 1-14, June.
    16. Monghasemi, Nima & Vadiee, Amir, 2018. "A review of solar chimney integrated systems for space heating and cooling application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2714-2730.
    17. Ibañez-Puy, María & Vidaurre-Arbizu, Marina & Sacristán-Fernández, José Antonio & Martín-Gómez, César, 2017. "Opaque Ventilated Façades: Thermal and energy performance review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 180-191.
    18. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    19. Radoslav Ponechal & Peter Krušinský & Peter Kysela & Peter Pisca, 2021. "Simulations of Airflow in the Roof Space of a Gothic Sanctuary Using CFD Models," Energies, MDPI, vol. 14(12), pages 1-20, June.
    20. Li, Haorong & Yu, Yuebin & Niu, Fuxin & Shafik, Michel & Chen, Bing, 2014. "Performance of a coupled cooling system with earth-to-air heat exchanger and solar chimney," Renewable Energy, Elsevier, vol. 62(C), pages 468-477.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:1:p:265-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.