IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7425-d841273.html
   My bibliography  Save this article

Theoretical Study on the Effect of Parallel Air Chambers Embedded in Rockwool Panels on the Energy Consumption of a Low-Energy High School

Author

Listed:
  • Raul C. Ene

    (Department of Civil Engineering and Building Services, Faculty of Civil Engineering, Politehnica University of Timisoara, 300006 Timișoara, Romania)

  • Silviana Brata

    (Department of Civil Engineering and Building Services, Faculty of Civil Engineering, Politehnica University of Timisoara, 300006 Timișoara, Romania)

  • Iosif Boros

    (Boros Cons, Ltd., Str. Gheorghe Pitut No. 2, Block Z2, Flat 5, 415200 Beiuș, Romania)

  • Remus Chendes

    (Department of Civil Engineering and Building Services, Faculty of Civil Engineering, Politehnica University of Timisoara, 300006 Timișoara, Romania)

  • Daniel Dan

    (Department of Civil Engineering and Building Services, Faculty of Civil Engineering, Politehnica University of Timisoara, 300006 Timișoara, Romania)

Abstract

In the construction industry, sustainability is evaluated, not only in terms of harmful emissions generated during the operation phase, but also in terms of the embodied emissions belonging to building materials and technical equipment. As a consequence, the implementation of highly efficient building materials has become crucial. The objective of this study is to investigate an insulation system based on parallel air chambers embodied in rockwool panels, and to correlate the implications of its implementation compared to an existing insulation system. The analysis was conducted on the first administrative/public building completed in Romania, according to passive house standards. The study begins with experimental investigations of insulation systems under laboratory conditions. Thus, the influence of air layers on the thermal properties of existing rockwool panels was assessed. On the basis of the experimental results, the theoretical energy demand of the high school building and life cycle analysis are determined using simulation software for both insulation solutions: existing insulation composed of solid rockwool panels, and rockwool panels with embedded air layers. The thickness of the insulating air layers is optimized, and with the help of Rayleigh–Bénard equations for each of the five climate zones that were further determined. Taken together, it is expected to achieve a better insulation system by maintaining constant embedded emissions. In conclusion, assuming a 50-year life cycle for the high school building, the insulation system composed of rockwool with embedded air layers brings about a reduction in the total energy consumption of approximately 9.82%, compared to the case of a standard insulation system based on solid rockwool panels without additional air layers.

Suggested Citation

  • Raul C. Ene & Silviana Brata & Iosif Boros & Remus Chendes & Daniel Dan, 2022. "Theoretical Study on the Effect of Parallel Air Chambers Embedded in Rockwool Panels on the Energy Consumption of a Low-Energy High School," Sustainability, MDPI, vol. 14(12), pages 1-25, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7425-:d:841273
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7425/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7425/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng, Yuanda & Gao, Min & Dong, Jiankai & Jia, Jie & Zhao, Xudong & Li, Guiqiang, 2018. "Investigation on the daylight and overall energy performance of semi-transparent photovoltaic facades in cold climatic regions of China," Applied Energy, Elsevier, vol. 232(C), pages 517-526.
    2. John M. Kamara & Oliver Heidrich & Vincenza E. Tafaro & Sebastiano Maltese & Mario C. Dejaco & Fulvio Re Cecconi, 2020. "Change Factors and the Adaptability of Buildings," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    3. Zhang, Tiantian & Yang, Hongxing, 2019. "Heat transfer pattern judgment and thermal performance enhancement of insulation air layers in building envelopes," Applied Energy, Elsevier, vol. 250(C), pages 834-845.
    4. Sun, Wei & Ji, Jie & Luo, Chenglong & He, Wei, 2011. "Performance of PV-Trombe wall in winter correlated with south façade design," Applied Energy, Elsevier, vol. 88(1), pages 224-231, January.
    5. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    6. Harris, D.J. & Helwig, N., 2007. "Solar chimney and building ventilation," Applied Energy, Elsevier, vol. 84(2), pages 135-146, February.
    7. Aleksandar Petrovski & Emmanuel Pauwels & Aránzazu Galán González, 2021. "Implementing Regenerative Design Principles: A Refurbishment Case Study of the First Regenerative Building in Spain," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    8. Hu, Zhongting & He, Wei & Ji, Jie & Hu, Dengyun & Lv, Song & Chen, Hongbing & Shen, Zhihe, 2017. "Comparative study on the annual performance of three types of building integrated photovoltaic (BIPV) Trombe wall system," Applied Energy, Elsevier, vol. 194(C), pages 81-93.
    9. Han, Jun & Lu, Lin & Yang, Hongxing, 2010. "Numerical evaluation of the mixed convective heat transfer in a double-pane window integrated with see-through a-Si PV cells with low-e coatings," Applied Energy, Elsevier, vol. 87(11), pages 3431-3437, November.
    10. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    11. Wang, Meng & Peng, Jinqing & Li, Nianping & Yang, Hongxing & Wang, Chunlei & Li, Xue & Lu, Tao, 2017. "Comparison of energy performance between PV double skin facades and PV insulating glass units," Applied Energy, Elsevier, vol. 194(C), pages 148-160.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tiantian & Yang, Hongxing, 2019. "Heat transfer pattern judgment and thermal performance enhancement of insulation air layers in building envelopes," Applied Energy, Elsevier, vol. 250(C), pages 834-845.
    2. Zhang, Tiantian & Yang, Hongxing, 2019. "Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades," Applied Energy, Elsevier, vol. 242(C), pages 107-120.
    3. Hong, Xiaoqiang & Leung, Michael K.H. & He, Wei, 2019. "Effective use of venetian blind in Trombe wall for solar space conditioning control," Applied Energy, Elsevier, vol. 250(C), pages 452-460.
    4. Huang, Junchao & Yu, Jinghua & Yang, Hongxing, 2018. "Effects of key factors on the heat insulation performance of a hollow block ventilated wall," Applied Energy, Elsevier, vol. 232(C), pages 409-423.
    5. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    6. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    7. Yu, Bendong & Fan, Miaomiao & Gu, Tao & Xia, Xiaokang & Li, Niansi, 2022. "The performance analysis of the photo-thermal driven synergetic catalytic PV-Trombe wall," Renewable Energy, Elsevier, vol. 192(C), pages 264-278.
    8. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    9. Luo, Yongqiang & Zhang, Ling & Wang, Xiliang & Xie, Lei & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & He, Xihua, 2017. "A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds," Applied Energy, Elsevier, vol. 199(C), pages 281-293.
    10. Qiu, Changyu & Yang, Hongxing, 2020. "Daylighting and overall energy performance of a novel semi-transparent photovoltaic vacuum glazing in different climate zones," Applied Energy, Elsevier, vol. 276(C).
    11. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    12. Qiu, Changyu & Yang, Hongxing, 2022. "Dynamic coupling of a heat transfer model and whole building simulation for a novel cadmium telluride-based vacuum photovoltaic glazing," Energy, Elsevier, vol. 250(C).
    13. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wang, Yingzi & Meng, Fangfang & Wu, Jing, 2016. "Thermal performance evaluation of an active building integrated photovoltaic thermoelectric wall system," Applied Energy, Elsevier, vol. 177(C), pages 25-39.
    14. Yu, Bendong & Hou, Jingxin & He, Wei & Liu, Shanshan & Hu, Zhongting & Ji, Jie & Chen, Hongbing & Xu, Gang, 2018. "Study on a high-performance photocatalytic-Trombe wall system for space heating and air purification," Applied Energy, Elsevier, vol. 226(C), pages 365-380.
    15. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Yu, Bendong & Li, Niansi & Yan, Chengchu & Liu, Xiaoyong & Liu, Huifang & Ji, Jie & Xu, Xiaoping, 2022. "The comprehensive performance analysis on a novel high-performance air-purification-sterilization type PV-Trombe wall," Renewable Energy, Elsevier, vol. 182(C), pages 1201-1218.
    17. Li, Yilin & Darkwa, Jo & Kokogiannakis, Georgios & Su, Weiguang, 2019. "Phase change material blind system for double skin façade integration: System development and thermal performance evaluation," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Yu, Bendong & Yang, Jichun & He, Wei & Qin, Minghui & Zhao, Xudong & Chen, Hongbing, 2019. "The performance analysis of a novel hybrid solar gradient utilization photocatalytic-thermal-catalytic-Trombe wall system," Energy, Elsevier, vol. 174(C), pages 420-435.
    19. Xie, Hao & Yu, Bendong & Wang, Jun & Ji, Jie, 2021. "A novel disinfected Trombe wall for space heating and virus inactivation: Concept and performance investigation," Applied Energy, Elsevier, vol. 291(C).
    20. Lin, Yuan & Ji, Jie & Lu, Xiangyou & Luo, Kun & Zhou, Fan & Ma, Yang, 2019. "Thermal and electrical behavior of built-middle photovoltaic integrated Trombe wall: Experimental and numerical study," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7425-:d:841273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.