IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i12p3282-3291.html
   My bibliography  Save this article

Input output feedback linearization control and variable step size MPPT algorithm of a grid-connected photovoltaic inverter

Author

Listed:
  • Lalili, D.
  • Mellit, A.
  • Lourci, N.
  • Medjahed, B.
  • Berkouk, E.M.

Abstract

In this paper, the power factor of a grid-connected photovoltaic inverter is controlled using the input output Feedback Linearization Control (FLC) technique. This technique transforms the nonlinear state model of the inverter in the d–q reference frame into two equivalent linear subsystems, and then applies a pole placement linear control loops on this subsystem in order to separately control the grid power factor and the dc link voltage of the inverter. Maximum Power Point Tracker (MPPT) that allows extraction of maximum available power from the photovoltaic (PV) array has been included. This MPPT is based on variable step size incremental conductance method. Compared with conventional fixed step size method, the variable step MPPT improves the speed and the accuracy of the tracking.

Suggested Citation

  • Lalili, D. & Mellit, A. & Lourci, N. & Medjahed, B. & Berkouk, E.M., 2011. "Input output feedback linearization control and variable step size MPPT algorithm of a grid-connected photovoltaic inverter," Renewable Energy, Elsevier, vol. 36(12), pages 3282-3291.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:12:p:3282-3291
    DOI: 10.1016/j.renene.2011.04.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111001996
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.04.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rahim, N.A. & Selvaraj, J. & Krismadinata, C., 2010. "Five-level inverter with dual reference modulation technique for grid-connected PV system," Renewable Energy, Elsevier, vol. 35(3), pages 712-720.
    2. Houssamo, Issam & Locment, Fabrice & Sechilariu, Manuela, 2010. "Maximum power tracking for photovoltaic power system: Development and experimental comparison of two algorithms," Renewable Energy, Elsevier, vol. 35(10), pages 2381-2387.
    3. Hamrouni, N. & Jraidi, M. & Chérif, A., 2008. "New control strategy for 2-stage grid-connected photovoltaic power system," Renewable Energy, Elsevier, vol. 33(10), pages 2212-2221.
    4. Altas, I.H. & Sharaf, A.M., 2008. "A novel maximum power fuzzy logic controller for photovoltaic solar energy systems," Renewable Energy, Elsevier, vol. 33(3), pages 388-399.
    5. Syafaruddin, & Karatepe, Engin & Hiyama, Takashi, 2009. "Polar coordinated fuzzy controller based real-time maximum-power point control of photovoltaic system," Renewable Energy, Elsevier, vol. 34(12), pages 2597-2606.
    6. Mellit, A. & Rezzouk, H. & Messai, A. & Medjahed, B., 2011. "FPGA-based real time implementation of MPPT-controller for photovoltaic systems," Renewable Energy, Elsevier, vol. 36(5), pages 1652-1661.
    7. Hassaine, L. & Olias, E. & Quintero, J. & Haddadi, M., 2009. "Digital power factor control and reactive power regulation for grid-connected photovoltaic inverter," Renewable Energy, Elsevier, vol. 34(1), pages 315-321.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sampaio, Leonardo P. & de Brito, Moacyr A.G. & de A. e Melo, Guilherme & Canesin, Carlos A., 2016. "Grid-tie three-phase inverter with active power injection and reactive power compensation," Renewable Energy, Elsevier, vol. 85(C), pages 854-864.
    2. Tahsin Fahima Orchi & Md Apel Mahmud & Amanullah Maung Than Oo, 2018. "Generalized Dynamical Modeling of Multiple Photovoltaic Units in a Grid-Connected System for Analyzing Dynamic Interactions," Energies, MDPI, vol. 11(2), pages 1-12, January.
    3. Yuan, Xiaohui & Chen, Zhihuan & Yuan, Yanbin & Huang, Yuehua & Li, Xianshan & Li, Wenwu, 2016. "Sliding mode controller of hydraulic generator regulating system based on the input/output feedback linearization method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 18-34.
    4. Muhammad Awais & Laiq Khan & Saghir Ahmad & Sidra Mumtaz & Rabiah Badar, 2020. "Nonlinear adaptive NeuroFuzzy feedback linearization based MPPT control schemes for photovoltaic system in microgrid," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-36, June.
    5. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2017. "Comprehensive overview of grid interfaced solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 316-332.
    6. Savić, Aleksandar & Đurišić, Željko, 2014. "Optimal sizing and location of SVC devices for improvement of voltage profile in distribution network with dispersed photovoltaic and wind power plants," Applied Energy, Elsevier, vol. 134(C), pages 114-124.
    7. Kim, Wook & Duong, Van-Huan & Nguyen, Thanh-Tuan & Choi, Woojin, 2013. "Analysis of the effects of inverter ripple current on a photovoltaic power system by using an AC impedance model of the solar cell," Renewable Energy, Elsevier, vol. 59(C), pages 150-157.
    8. Chun-Liang Liu & Jing-Hsiao Chen & Yi-Hua Liu & Zong-Zhen Yang, 2014. "An Asymmetrical Fuzzy-Logic-Control-Based MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 7(4), pages 1-17, April.
    9. Obi, Manasseh & Bass, Robert, 2016. "Trends and challenges of grid-connected photovoltaic systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1082-1094.
    10. Hassaine, L. & OLias, E. & Quintero, J. & Salas, V., 2014. "Overview of power inverter topologies and control structures for grid connected photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 796-807.
    11. Muhammad Yasir Ali Khan & Haoming Liu & Zhihao Yang & Xiaoling Yuan, 2020. "A Comprehensive Review on Grid Connected Photovoltaic Inverters, Their Modulation Techniques, and Control Strategies," Energies, MDPI, vol. 13(16), pages 1-40, August.
    12. Anupama Ganguly & Pabitra Kumar Biswas & Chiranjit Sain & Ahmad Taher Azar & Ahmed Redha Mahlous & Saim Ahmed, 2023. "Horse Herd Optimized Intelligent Controller for Sustainable PV Interface Grid-Connected System: A Qualitative Approach," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    13. Parlak, Koray Sener, 2014. "FPGA based new MPPT (maximum power point tracking) method for PV (photovoltaic) array system operating partially shaded conditions," Energy, Elsevier, vol. 68(C), pages 399-410.
    14. Shaowu Li, 2021. "Circuit Parameter Range of Photovoltaic System to Correctly Use the MPP Linear Model of Photovoltaic Cell," Energies, MDPI, vol. 14(13), pages 1-27, July.
    15. Sidra Mumtaz & Saghir Ahmad & Laiq Khan & Saima Ali & Tariq Kamal & Syed Zulqadar Hassan, 2018. "Adaptive Feedback Linearization Based NeuroFuzzy Maximum Power Point Tracking for a Photovoltaic System," Energies, MDPI, vol. 11(3), pages 1-15, March.
    16. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajesh, R. & Carolin Mabel, M., 2015. "A comprehensive review of photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 231-248.
    2. Nasiri, Reza & Radan, Ahmad, 2011. "Pole-placement control of 4-leg voltage-source inverters for standalone photovoltaic systems: Considering digital delays," Renewable Energy, Elsevier, vol. 36(2), pages 858-865.
    3. Nasiri, Reza & Radan, Ahmad, 2011. "Adaptive pole-placement control of 4-leg voltage-source inverters for standalone photovoltaic systems," Renewable Energy, Elsevier, vol. 36(7), pages 2032-2042.
    4. Mellit, Adel & Kalogirou, Soteris A., 2014. "MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives," Energy, Elsevier, vol. 70(C), pages 1-21.
    5. Nasiri, Reza & Radan, Ahmad, 2011. "Adaptive decoupled control of 4-leg voltage-source inverters for standalone photovoltaic systems: Adjusting transient state response," Renewable Energy, Elsevier, vol. 36(10), pages 2733-2741.
    6. Hassaine, L. & OLias, E. & Quintero, J. & Salas, V., 2014. "Overview of power inverter topologies and control structures for grid connected photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 796-807.
    7. Salah Beni Hamed & Mouna Ben Hamed & Lassaad Sbita, 2022. "Robust Voltage Control of a Buck DC-DC Converter: A Sliding Mode Approach," Energies, MDPI, vol. 15(17), pages 1-21, August.
    8. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    9. Po-Chen Cheng & Bo-Rei Peng & Yi-Hua Liu & Yu-Shan Cheng & Jia-Wei Huang, 2015. "Optimization of a Fuzzy-Logic-Control-Based MPPT Algorithm Using the Particle Swarm Optimization Technique," Energies, MDPI, vol. 8(6), pages 1-23, June.
    10. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    11. Papaioannou, Ioulia T. & Purvins, Arturs, 2012. "Mathematical and graphical approach for maximum power point modelling," Applied Energy, Elsevier, vol. 91(1), pages 59-66.
    12. Danandeh, M.A. & Mousavi G., S.M., 2018. "Comparative and comprehensive review of maximum power point tracking methods for PV cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2743-2767.
    13. Datta, Manoj & Senjyu, Tomonobu & Yona, Atsushi & Funabashi, Toshihisa, 2011. "A fuzzy based method for leveling output power fluctuations of photovoltaic-diesel hybrid power system," Renewable Energy, Elsevier, vol. 36(6), pages 1693-1703.
    14. Qi, Jun & Zhang, Youbing & Chen, Yi, 2014. "Modeling and maximum power point tracking (MPPT) method for PV array under partial shade conditions," Renewable Energy, Elsevier, vol. 66(C), pages 337-345.
    15. Dinçer, Furkan, 2011. "Overview of the photovoltaic technology status and perspective in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3768-3779.
    16. Choi, Woo-Young & Lee, Change-Goo, 2012. "Photovoltaic panel integrated power conditioning system using a high efficiency step-up DC–DC converter," Renewable Energy, Elsevier, vol. 41(C), pages 227-234.
    17. Chun-Liang Liu & Jing-Hsiao Chen & Yi-Hua Liu & Zong-Zhen Yang, 2014. "An Asymmetrical Fuzzy-Logic-Control-Based MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 7(4), pages 1-17, April.
    18. Kakosimos, Panagiotis E. & Kladas, Antonios G., 2011. "Implementation of photovoltaic array MPPT through fixed step predictive control technique," Renewable Energy, Elsevier, vol. 36(9), pages 2508-2514.
    19. Indu Rani, B. & Saravana Ilango, G. & Nagamani, C., 2012. "Power flow management algorithm for photovoltaic systems feeding DC/AC loads," Renewable Energy, Elsevier, vol. 43(C), pages 267-275.
    20. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:12:p:3282-3291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.