IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i12p2853-2861.html
   My bibliography  Save this article

Solar resources estimation combining digital terrain models and satellite images techniques

Author

Listed:
  • Bosch, J.L.
  • Batlles, F.J.
  • Zarzalejo, L.F.
  • López, G.

Abstract

One of the most important steps to make use of any renewable energy is to perform an accurate estimation of the resource that has to be exploited. In the designing process of both active and passive solar energy systems, radiation data is required for the site, with proper spatial resolution. Generally, a radiometric stations network is used in this evaluation, but when they are too dispersed or not available for the study area, satellite images can be utilized as indirect solar radiation measurements. Although satellite images cover wide areas with a good acquisition frequency they usually have a poor spatial resolution limited by the size of the image pixel, and irradiation must be interpolated to evaluate solar irradiation at a sub-pixel scale. When pixels are located in flat and homogeneous areas, correlation of solar irradiation is relatively high, and classic interpolation can provide a good estimation. However, in complex topography zones, data interpolation is not adequate and the use of Digital Terrain Model (DTM) information can be helpful. In this work, daily solar irradiation is estimated for a wide mountainous area using a combination of Meteosat satellite images and a DTM, with the advantage of avoiding the necessity of ground measurements. This methodology utilizes a modified Heliosat-2 model, and applies for all sky conditions; it also introduces a horizon calculation of the DTM points and accounts for the effect of snow covers. Model performance has been evaluated against data measured in 12 radiometric stations, with results in terms of the Root Mean Square Error (RMSE) of 10%, and a Mean Bias Error (MBE) of +2%, both expressed as a percentage of the mean value measured.

Suggested Citation

  • Bosch, J.L. & Batlles, F.J. & Zarzalejo, L.F. & López, G., 2010. "Solar resources estimation combining digital terrain models and satellite images techniques," Renewable Energy, Elsevier, vol. 35(12), pages 2853-2861.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:12:p:2853-2861
    DOI: 10.1016/j.renene.2010.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110002296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Darula, Stanislav & Kittler, Richard, 2008. "Occurrence of standard skies during typical daytime half-days," Renewable Energy, Elsevier, vol. 33(3), pages 491-500.
    2. Hofierka, Jaroslav & Kaňuk, Ján, 2009. "Assessment of photovoltaic potential in urban areas using open-source solar radiation tools," Renewable Energy, Elsevier, vol. 34(10), pages 2206-2214.
    3. Bosch, J.L. & López, G. & Batlles, F.J., 2008. "Daily solar irradiation estimation over a mountainous area using artificial neural networks," Renewable Energy, Elsevier, vol. 33(7), pages 1622-1628.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pillot, Benjamin & Muselli, Marc & Poggi, Philippe & Haurant, Pierrick & Hared, Idriss, 2013. "The first disaggregated solar atlas of Djibouti: A decision-making tool for solar systems integration in the energy scheme," Renewable Energy, Elsevier, vol. 57(C), pages 57-69.
    2. Janjai, Serm & Masiri, Itsara & Laksanaboonsong, Jarungsaeng, 2013. "Satellite-derived solar resource maps for Myanmar," Renewable Energy, Elsevier, vol. 53(C), pages 132-140.
    3. Sarmiento, Nilsa & Belmonte, Silvina & Dellicompagni, Pablo & Franco, Judith & Escalante, Karina & Sarmiento, Joaquín, 2019. "A solar irradiation GIS as decision support tool for the Province of Salta, Argentina," Renewable Energy, Elsevier, vol. 132(C), pages 68-80.
    4. Bessafi, Miloud & Oree, Vishwamitra & Khoodaruth, Abdel & Jumaux, Guillaume & Bonnardot, François & Jeanty, Patrick & Delsaut, Mathieu & Chabriat, Jean-Pierre & Dauhoo, Muhammad Zaid, 2018. "Downscaling solar irradiance using DEM-based model in young volcanic islands with rugged topography," Renewable Energy, Elsevier, vol. 126(C), pages 584-593.
    5. Martínez-Chico, M. & Batlles, F.J. & Bosch, J.L., 2011. "Cloud classification in a mediterranean location using radiation data and sky images," Energy, Elsevier, vol. 36(7), pages 4055-4062.
    6. Bessafi, Miloud & Oree, Vishwamitra & Khoodaruth, Abdel & Chabriat, Jean-Pierre, 2020. "Impact of decomposition and kriging models on the solar irradiance downscaling accuracy in regions with complex topography," Renewable Energy, Elsevier, vol. 162(C), pages 1992-2003.
    7. Moreno, A. & Gilabert, M.A. & Camacho, F. & Martínez, B., 2013. "Validation of daily global solar irradiation images from MSG over Spain," Renewable Energy, Elsevier, vol. 60(C), pages 332-342.
    8. Ramirez Camargo, Luis & Gruber, Katharina & Nitsch, Felix, 2019. "Assessing variables of regional reanalysis data sets relevant for modelling small-scale renewable energy systems," Renewable Energy, Elsevier, vol. 133(C), pages 1468-1478.
    9. Rehman, Naveed ur & Katebi, Milad & Shaikh, Faraz & Al Karim, Miftah, 2020. "Solar resource assessment of modern parking machines in an urban environment," Renewable Energy, Elsevier, vol. 149(C), pages 1406-1413.
    10. Yichao Xu & Xinying Wang & Zhiqiang Jiang & Yi Liu & Li Zhang & Yukun Li, 2023. "An Improved Fineness Flood Risk Analysis Method Based on Digital Terrain Acquisition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3973-3998, August.
    11. Riveros-Rosas, D. & Arancibia-Bulnes, C.A. & Bonifaz, R. & Medina, M.A. & Peón, R. & Valdes, M., 2015. "Analysis of a solarimetric database for Mexico and comparison with the CSR model," Renewable Energy, Elsevier, vol. 75(C), pages 21-29.
    12. Alonso-Montesinos, J. & Batlles, F.J., 2015. "The use of a sky camera for solar radiation estimation based on digital image processing," Energy, Elsevier, vol. 90(P1), pages 377-386.
    13. Hernández-Escobedo, Q. & Fernández-García, A. & Manzano-Agugliaro, F., 2017. "Solar resource assessment for rural electrification and industrial development in the Yucatan Peninsula (Mexico)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1550-1561.
    14. Luis Ramirez Camargo & Judith Franco & Nilsa María Sarmiento Babieri & Silvina Belmonte & Karina Escalante & Raphaela Pagany & Wolfgang Dorner, 2016. "Technical, Economical and Social Assessment of Photovoltaics in the Frame of the Net-Metering Law for the Province of Salta, Argentina," Energies, MDPI, vol. 9(3), pages 1-21, February.
    15. Alonso-Montesinos, J. & Batlles, F.J., 2015. "Solar radiation forecasting in the short- and medium-term under all sky conditions," Energy, Elsevier, vol. 83(C), pages 387-393.
    16. Linares-Rodriguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vazquez, David & Tovar-Pescador, Joaquin, 2013. "An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images," Energy, Elsevier, vol. 61(C), pages 636-645.
    17. Alonso-Montesinos, J. & Martínez-Durbán, M. & del Sagrado, J. & del Águila, I.M. & Batlles, F.J., 2016. "The application of Bayesian network classifiers to cloud classification in satellite images," Renewable Energy, Elsevier, vol. 97(C), pages 155-161.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.
    2. Rosiek, S. & Batlles, F.J., 2010. "Modelling a solar-assisted air-conditioning system installed in CIESOL building using an artificial neural network," Renewable Energy, Elsevier, vol. 35(12), pages 2894-2901.
    3. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    4. Zarzo, Manuel & Martí, Pau, 2011. "Modeling the variability of solar radiation data among weather stations by means of principal components analysis," Applied Energy, Elsevier, vol. 88(8), pages 2775-2784, August.
    5. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    6. Aleksandra Besser & Jan K. Kazak & Małgorzata Świąder & Szymon Szewrański, 2019. "A Customized Decision Support System for Renewable Energy Application by Housing Association," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    7. Bocca, Alberto & Chiavazzo, Eliodoro & Macii, Alberto & Asinari, Pietro, 2015. "Solar energy potential assessment: An overview and a fast modeling approach with application to Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 291-296.
    8. Vardimon, Ran, 2011. "Assessment of the potential for distributed photovoltaic electricity production in Israel," Renewable Energy, Elsevier, vol. 36(2), pages 591-594.
    9. Abbes, Dhaker & Martinez, André & Champenois, Gérard, 2014. "Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 46-62.
    10. Rehman, Naveed ur & Katebi, Milad & Shaikh, Faraz & Al Karim, Miftah, 2020. "Solar resource assessment of modern parking machines in an urban environment," Renewable Energy, Elsevier, vol. 149(C), pages 1406-1413.
    11. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    12. ur Rehman, Naveed & Hijazi, Mohamad & Uzair, Muhammad, 2020. "Solar potential assessment of public bus routes for solar buses," Renewable Energy, Elsevier, vol. 156(C), pages 193-200.
    13. Bougiatioti, Flora & Michael, Aimilios, 2015. "The architectural integration of active solar systems. Building applications in the Eastern Mediterranean region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 966-982.
    14. Tucho, Gudina Terefe & Weesie, Peter D.M. & Nonhebel, Sanderine, 2014. "Assessment of renewable energy resources potential for large scale and standalone applications in Ethiopia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 422-431.
    15. Sarmiento, Nilsa & Belmonte, Silvina & Dellicompagni, Pablo & Franco, Judith & Escalante, Karina & Sarmiento, Joaquín, 2019. "A solar irradiation GIS as decision support tool for the Province of Salta, Argentina," Renewable Energy, Elsevier, vol. 132(C), pages 68-80.
    16. Hossein Yousefi & Hamed Hafeznia & Amin Yousefi-Sahzabi, 2018. "Spatial Site Selection for Solar Power Plants Using a GIS-Based Boolean-Fuzzy Logic Model: A Case Study of Markazi Province, Iran," Energies, MDPI, vol. 11(7), pages 1-18, June.
    17. Mohamed A. Ali & Ashraf Elsayed & Islam Elkabani & Mohammad Akrami & M. Elsayed Youssef & Gasser E. Hassan, 2023. "Optimizing Artificial Neural Networks for the Accurate Prediction of Global Solar Radiation: A Performance Comparison with Conventional Methods," Energies, MDPI, vol. 16(17), pages 1-30, August.
    18. Luis Ramirez Camargo & Judith Franco & Nilsa María Sarmiento Babieri & Silvina Belmonte & Karina Escalante & Raphaela Pagany & Wolfgang Dorner, 2016. "Technical, Economical and Social Assessment of Photovoltaics in the Frame of the Net-Metering Law for the Province of Salta, Argentina," Energies, MDPI, vol. 9(3), pages 1-21, February.
    19. Theodoridou, Ifigeneia & Karteris, Marinos & Mallinis, Georgios & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "Assessment of retrofitting measures and solar systems' potential in urban areas using Geographical Information Systems: Application to a Mediterranean city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6239-6261.
    20. Lukač, Niko & Seme, Sebastijan & Dežan, Katarina & Žalik, Borut & Štumberger, Gorazd, 2016. "Economic and environmental assessment of rooftops regarding suitability for photovoltaic systems installation based on remote sensing data," Energy, Elsevier, vol. 107(C), pages 854-865.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:12:p:2853-2861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.