IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i1p289-296.html
   My bibliography  Save this article

Energy monitoring and conservation potential in school buildings in the C′ climatic zone of Greece

Author

Listed:
  • Dimoudi, A.
  • Kostarela, P.

Abstract

Energy efficiency is very important in school buildings as it is associated with comfort and air quality conditions in their interior and energy costs of these buildings are associated with their main operational costs. Moreover, school buildings differ from other types of buildings because they are the places where children are educated and have the opportunity to learn how to become environmentally-aware citizens. There is an increasing awareness throughout Europe for promotion of sustainable solutions in school buildings involving energy efficient technologies and measures. The aim of this article is to assess the energy performance, based on monitored data, of school buildings in the C′ climatic zone of Greece, a region with the lowest air temperature during winter period. It also demonstrates, through simulation studies, the potential for energy conservation of school buildings in this region.

Suggested Citation

  • Dimoudi, A. & Kostarela, P., 2009. "Energy monitoring and conservation potential in school buildings in the C′ climatic zone of Greece," Renewable Energy, Elsevier, vol. 34(1), pages 289-296.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:1:p:289-296
    DOI: 10.1016/j.renene.2008.04.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108001493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.04.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santamouris, M. & Balaras, C.A. & Dascalaki, E. & Argiriou, A. & Gaglia, A., 1994. "Energy consumption and the potential for energy conservation in school buildings in Hellas," Energy, Elsevier, vol. 19(6), pages 653-660.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fiaschi, Daniele & Bandinelli, Romeo & Conti, Silvia, 2012. "A case study for energy issues of public buildings and utilities in a small municipality: Investigation of possible improvements and integration with renewables," Applied Energy, Elsevier, vol. 97(C), pages 101-114.
    2. Piotr Kosiński & Aldona Skotnicka-Siepsiak, 2022. "Possibilities of Adapting the University Lecture Room to the Green University Standard in Terms of Thermal Comfort and Ventilation Accuracy," Energies, MDPI, vol. 15(10), pages 1-23, May.
    3. Dias Pereira, Luísa & Raimondo, Daniela & Corgnati, Stefano Paolo & Gameiro da Silva, Manuel, 2014. "Energy consumption in schools – A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 911-922.
    4. Anxiao Zhang & Regina Bokel & Andy Van den Dobbelsteen & Yanchen Sun & Qiong Huang & Qi Zhang, 2017. "The Effect of Geometry Parameters on Energy and Thermal Performance of School Buildings in Cold Climates of China," Sustainability, MDPI, vol. 9(10), pages 1-19, September.
    5. Hong, Taehoon & Koo, Choongwan & Jeong, Kwangbok, 2012. "A decision support model for reducing electric energy consumption in elementary school facilities," Applied Energy, Elsevier, vol. 95(C), pages 253-266.
    6. Dervishi, Sokol & Baçi, Nerina, 2023. "Early design evaluation of low-rise school building morphology on energy performance: Climatic contexts of Southeast Europe," Energy, Elsevier, vol. 269(C).
    7. Attia, Shady & Shadmanfar, Niloufar & Ricci, Federico, 2020. "Developing two benchmark models for nearly zero energy schools," Applied Energy, Elsevier, vol. 263(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaitani, N. & Lehmann, C. & Santamouris, M. & Mihalakakou, G. & Patargias, P., 2010. "Using principal component and cluster analysis in the heating evaluation of the school building sector," Applied Energy, Elsevier, vol. 87(6), pages 2079-2086, June.
    2. Giuliano Dall'O' & Elisa Bruni & Angela Panza, 2013. "Improvement of the Sustainability of Existing School Buildings According to the Leadership in Energy and Environmental Design (LEED) ® Protocol: A Case Study in Italy," Energies, MDPI, vol. 6(12), pages 1-21, December.
    3. Paola Marrone & Paola Gori & Francesco Asdrubali & Luca Evangelisti & Laura Calcagnini & Gianluca Grazieschi, 2018. "Energy Benchmarking in Educational Buildings through Cluster Analysis of Energy Retrofitting," Energies, MDPI, vol. 11(3), pages 1-20, March.
    4. Heracleous, Chryso & Michael, Aimilios, 2018. "Assessment of overheating risk and the impact of natural ventilation in educational buildings of Southern Europe under current and future climatic conditions," Energy, Elsevier, vol. 165(PB), pages 1228-1239.
    5. Wang, Yang & Zhao, Fu-Yun & Kuckelkorn, Jens & Liu, Di & Liu, Li-Qun & Pan, Xiao-Chuan, 2014. "Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit," Energy, Elsevier, vol. 64(C), pages 991-1001.
    6. Mihalakakou, G & Psiloglou, B & Santamouris, M & Nomidis, D, 2002. "Application of renewable energy sources in the Greek islands of the South Aegean Sea," Renewable Energy, Elsevier, vol. 26(1), pages 1-19.
    7. Georgopoulou, E. & Sarafidis, Y. & Mirasgedis, S. & Balaras, C.A. & Gaglia, A. & Lalas, D.P., 2006. "Evaluating the need for economic support policies in promoting greenhouse gas emission reduction measures in the building sector: The case of Greece," Energy Policy, Elsevier, vol. 34(15), pages 2012-2031, October.
    8. Miimu Airaksinen, 2011. "Energy Use in Day Care Centers and Schools," Energies, MDPI, vol. 4(6), pages 1-12, June.
    9. Beccali, Marco & Ciulla, Giuseppina & Lo Brano, Valerio & Galatioto, Alessandra & Bonomolo, Marina, 2017. "Artificial neural network decision support tool for assessment of the energy performance and the refurbishment actions for the non-residential building stock in Southern Italy," Energy, Elsevier, vol. 137(C), pages 1201-1218.
    10. Georgios Martinopoulos & Vasiliki Kikidou & Dimitrios Bozis, 2018. "Energy Assessment of Building Physics Principles in Secondary Education Buildings," Energies, MDPI, vol. 11(11), pages 1-15, October.
    11. Zhu, L. & Hurt, R. & Correa, D. & Boehm, R., 2009. "Comprehensive energy and economic analyses on a zero energy house versus a conventional house," Energy, Elsevier, vol. 34(9), pages 1043-1053.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:1:p:289-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.