IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i11p2423-2427.html
   My bibliography  Save this article

Use of vegetable oil as fuel to improve the efficiency of cooking stove

Author

Listed:
  • Natarajan, R.
  • Karthikeyan, N.S.
  • Agarwaal, Avinash
  • Sathiyanarayanan, K.

Abstract

In this study, an attempt has been made to use waste vegetable oil as a fuel for a cooking stove. Suitable modifications have been made in the kerosene stove for use with vegetable oil as fuel. The efficiency of the stove using vegetable oil as fuel is observed to be as high as 48.9% as compared to 34.9% with that of a conventional stove when a flat copper bottom vessel is used. Corresponding efficiency increase is also observed with other vessels.

Suggested Citation

  • Natarajan, R. & Karthikeyan, N.S. & Agarwaal, Avinash & Sathiyanarayanan, K., 2008. "Use of vegetable oil as fuel to improve the efficiency of cooking stove," Renewable Energy, Elsevier, vol. 33(11), pages 2423-2427.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:11:p:2423-2427
    DOI: 10.1016/j.renene.2008.01.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108000360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.01.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaushik, Lav Kumar & Muthukumar, P., 2020. "Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner," Energy, Elsevier, vol. 206(C).
    2. Bär, Roger & Reinhard, Jürgen & Ehrensperger, Albrecht & Kiteme, Boniface & Mkunda, Thomas & Wymann von Dach, Susanne, 2021. "The future of charcoal, firewood, and biogas in Kitui County and Kilimanjaro Region: Scenario development for policy support," Energy Policy, Elsevier, vol. 150(C).
    3. Muthukumar Palanisamy & Lav Kumar Kaushik & Arun Kumar Mahalingam & Sunita Deb & Pratibha Maurya & Sofia Rani Shaik & Muhammad Abdul Mujeebu, 2023. "Evolutions in Gaseous and Liquid Fuel Cook-Stove Technologies," Energies, MDPI, vol. 16(2), pages 1-37, January.
    4. Bansal, Mohit & Saini, R.P. & Khatod, D.K., 2013. "Development of cooking sector in rural areas in India—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 44-53.
    5. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K. & Ismail, A.K., 2015. "Experimental investigation of the performance of a liquid fuel-fired porous burner operating on kerosene-vegetable cooking oil (VCO) blends for micro-cogeneration of thermoelectric power," Renewable Energy, Elsevier, vol. 74(C), pages 505-516.
    6. Cadavid, Francisco J. & Cadavid, Yonatan & Amell, Andrés A. & Arrieta, Andrés E. & Echavarría, Juan D., 2014. "Numerical and experimental methodology to measure the thermal efficiency of pots on electrical stoves," Energy, Elsevier, vol. 73(C), pages 258-263.
    7. Ly, Hoang Vu & Kim, Jinsoo & Kim, Seung-Soo, 2013. "Pyrolysis characteristics and kinetics of palm fiber in a closed reactor," Renewable Energy, Elsevier, vol. 54(C), pages 91-95.
    8. Yan Zhao & Vince McDonell & Scott Samuelsen, 2022. "Residential Fuel Transition and Fuel Interchangeability in Current Self-Aspirating Combustion Applications: Historical Development and Future Expectations," Energies, MDPI, vol. 15(10), pages 1-50, May.
    9. Dinesha, P. & Kumar, Shiva & Rosen, Marc A., 2019. "Performance and emission analysis of a domestic wick stove using biofuel feedstock derived from waste cooking oil and sesame oil," Renewable Energy, Elsevier, vol. 136(C), pages 342-351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:11:p:2423-2427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.