IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v30y2005i4p611-620.html
   My bibliography  Save this article

Evaluation of performance parameters of PV modules deployed outdoors

Author

Listed:
  • Gxasheka, A.R.
  • van Dyk, E.E.
  • Meyer, E.L.

Abstract

This paper evaluates the performance parameters of five photovoltaic (PV) modules comprising crystalline silicon, multi-crystalline silicon and edge-defined film-fed growth (EFG) silicon technologies. This evaluation was accomplished by measuring and analysing the modules' performances during initial, intermediate and final stages of a 17-month test period. The effect of temperature and irradiance on the performance parameters was investigated. Results obtained indicate that some modules exhibited shunting behaviour and that the EFG silicon module experienced moisture ingress, which in part, resulted in 14% performance degradation. An analysis of the results revealed that the moisture ingress effectively reduced the active module area, resulting in reduced photon absorption, consequently reducing the electron-hole generation as indicated by the reduced short-circuit current. In addition, the EFG-Si module's shunt resistance appeared to decrease over the test period. The rest of the modules showed relatively stable performance, information that is crucial to the system designer and consumer.

Suggested Citation

  • Gxasheka, A.R. & van Dyk, E.E. & Meyer, E.L., 2005. "Evaluation of performance parameters of PV modules deployed outdoors," Renewable Energy, Elsevier, vol. 30(4), pages 611-620.
  • Handle: RePEc:eee:renene:v:30:y:2005:i:4:p:611-620
    DOI: 10.1016/j.renene.2004.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148104002435
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2004.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Dyk, E.E. & Meyer, E.L., 2004. "Analysis of the effect of parasitic resistances on the performance of photovoltaic modules," Renewable Energy, Elsevier, vol. 29(3), pages 333-344.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chandel, S.S. & Nagaraju Naik, M. & Sharma, Vikrant & Chandel, Rahul, 2015. "Degradation analysis of 28 year field exposed mono-c-Si photovoltaic modules of a direct coupled solar water pumping system in western Himalayan region of India," Renewable Energy, Elsevier, vol. 78(C), pages 193-202.
    2. Sharma, Vikrant & Sastry, O.S. & Kumar, Arun & Bora, Birinchi & Chandel, S.S., 2014. "Degradation analysis of a-Si, (HIT) hetro-junction intrinsic thin layer silicon and m-C-Si solar photovoltaic technologies under outdoor conditions," Energy, Elsevier, vol. 72(C), pages 536-546.
    3. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    4. Zia R. Tahir & Ammara Kanwal & Muhammad Asim & M. Bilal & Muhammad Abdullah & Sabeena Saleem & M. A. Mujtaba & Ibham Veza & Mohamed Mousa & M. A. Kalam, 2022. "Effect of Temperature and Wind Speed on Efficiency of Five Photovoltaic Module Technologies for Different Climatic Zones," Sustainability, MDPI, vol. 14(23), pages 1-32, November.
    5. Rahman, Md Momtazur & Khan, Imran & Alameh, Kamal, 2021. "Potential measurement techniques for photovoltaic module failure diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Bouaichi, Abdellatif & Alami Merrouni, Ahmed & Hajjaj, Charaf & Messaoudi, Choukri & Ghennioui, Abdellatif & Benlarabi, Ahmed & Ikken, Badr & El Amrani, Aumeur & Zitouni, Houssin, 2019. "In-situ evaluation of the early PV module degradation of various technologies under harsh climatic conditions: The case of Morocco," Renewable Energy, Elsevier, vol. 143(C), pages 1500-1518.
    7. Midtgard, Ole-Morten & Sætre, Tor Oskar & Yordanov, Georgi & Imenes, Anne Gerd & Nge, Chee Lim, 2010. "A qualitative examination of performance and energy yield of photovoltaic modules in southern Norway," Renewable Energy, Elsevier, vol. 35(6), pages 1266-1274.
    8. Sharma, Vikrant & Chandel, S.S., 2013. "Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 753-767.
    9. Carrero, C. & Amador, J. & Arnaltes, S., 2007. "A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances," Renewable Energy, Elsevier, vol. 32(15), pages 2579-2589.
    10. Esen, Vedat & Sağlam, Şafak & Oral, Bülent, 2017. "Light sources of solar simulators for photovoltaic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1240-1250.
    11. Nain, Preeti & Kumar, Arun, 2020. "Understanding the possibility of material release from end-of-life solar modules: A study based on literature review and survey analysis," Renewable Energy, Elsevier, vol. 160(C), pages 903-918.
    12. Bouraiou, Ahmed & Hamouda, Messaoud & Chaker, Abdelkader & Lachtar, Salah & Neçaibia, Ammar & Boutasseta, Nadir & Mostefaoui, Mohammed, 2017. "Experimental evaluation of the performance and degradation of single crystalline silicon photovoltaic modules in the Saharan environment," Energy, Elsevier, vol. 132(C), pages 22-30.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    2. Bastidas-Rodriguez, J.D. & Petrone, G. & Ramos-Paja, C.A. & Spagnuolo, G., 2017. "A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 38-54.
    3. Cuce, Erdem & Cuce, Pinar Mert & Bali, Tulin, 2013. "An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters," Applied Energy, Elsevier, vol. 111(C), pages 374-382.
    4. Kichou, Sofiane & Silvestre, Santiago & Nofuentes, Gustavo & Torres-Ramírez, Miguel & Chouder, Aissa & Guasch, Daniel, 2016. "Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure," Energy, Elsevier, vol. 96(C), pages 231-241.
    5. Carrero, C. & Amador, J. & Arnaltes, S., 2007. "A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances," Renewable Energy, Elsevier, vol. 32(15), pages 2579-2589.
    6. Shen, Yu & He, Zengxiang & Xu, Zhen & Wang, Yiye & Li, Chenxi & Zhang, Jinxia & Zhang, Kanjian & Wei, Haikun, 2022. "Modeling of photovoltaic modules under common shading conditions," Energy, Elsevier, vol. 256(C).
    7. Carrero, C. & Ramírez, D. & Rodríguez, J. & Platero, C.A., 2011. "Accurate and fast convergence method for parameter estimation of PV generators based on three main points of the I–V curve," Renewable Energy, Elsevier, vol. 36(11), pages 2972-2977.
    8. Javier Cubas & Santiago Pindado & Carlos De Manuel, 2014. "Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function," Energies, MDPI, vol. 7(7), pages 1-18, June.
    9. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2018. "An assessment of series resistance estimation techniques for different silicon based SPV modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 199-216.
    10. Fouad, M.M. & Shihata, Lamia A. & Morgan, ElSayed I., 2017. "An integrated review of factors influencing the perfomance of photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1499-1511.
    11. Carrero, C. & Rodríguez, J. & Ramírez, D. & Platero, C., 2010. "Simple estimation of PV modules loss resistances for low error modelling," Renewable Energy, Elsevier, vol. 35(5), pages 1103-1108.
    12. Carrero, C. & Ramirez, D. & Rodríguez, J. & Castillo-Sierra, R., 2021. "Sensitivity analysis of loss resistances variations of PV generators applied to the assessment of maximum power point changes due to degradation," Renewable Energy, Elsevier, vol. 173(C), pages 351-361.
    13. Ghani, F. & Rosengarten, G. & Duke, M. & Carson, J.K., 2014. "The numerical calculation of single-diode solar-cell modelling parameters," Renewable Energy, Elsevier, vol. 72(C), pages 105-112.
    14. Torres-Ramírez, M. & Nofuentes, G. & Silva, J.P. & Silvestre, S. & Muñoz, J.V., 2014. "Study on analytical modelling approaches to the performance of thin film PV modules in sunny inland climates," Energy, Elsevier, vol. 73(C), pages 731-740.
    15. Safdar Mehmood & Yang Xia & Furong Qu & Meng He, 2023. "Investigating the Performance of Efficient and Stable Planer Perovskite Solar Cell with an Effective Inorganic Carrier Transport Layer Using SCAPS-1D Simulation," Energies, MDPI, vol. 16(21), pages 1-14, November.
    16. Bastidas-Rodriguez, J.D. & Franco, E. & Petrone, G. & Ramos-Paja, C.A. & Spagnuolo, G., 2017. "Quantification of photovoltaic module degradation using model based indicators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 101-113.
    17. Piliougine, M. & Guejia-Burbano, R.A. & Petrone, G. & Sánchez-Pacheco, F.J. & Mora-López, L. & Sidrach-de-Cardona, M., 2021. "Parameters extraction of single diode model for degraded photovoltaic modules," Renewable Energy, Elsevier, vol. 164(C), pages 674-686.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:30:y:2005:i:4:p:611-620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.