IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v248y2025ics0960148125008250.html

Capacity configuration of hydropower-PV complementary station that is robust to the inter-annual variability in streamflow and PV energy

Author

Listed:
  • Zheng, Yifei
  • Zhang, Juntao
  • Cheng, Chuntian
  • Cao, Hui
  • Yang, Yuqi

Abstract

Conventional methods for sizing variable renewable energy (VRE) capacity integrated into hydropower are fed with several typical weather days or a single weather year dataset, which reduce computational complexity while neglecting the inter-annual variability of VRE and streamflow and yielding potentially unreliable results. This study proposes a novel tractable long-term model at hourly resolution to investigate the potential of hydro–VRE complementary operation for load following, reliable electricity supplying and to size the VRE capacity integrated into the hydropower stations. This methodology was applied to an actual hydropower-photovoltaic (PV) complementary station in China. We found that (1) PV capacity integrated into the hydropower is highly sensitive to the inter-annual variability of streamflow and PV energy; the PV capacity sized based on single-year-simulation ranges from 446 MW to 725 MW. (2) The PV deployment capacity based on 12-year-simulation is 510 MW. Compared with the PV deployment capacities based on single-year-simulation, it enables better hydropower-PV complementary load following performances and an average increase of 2.06 × 105 MWh in the annual electricity supply.

Suggested Citation

  • Zheng, Yifei & Zhang, Juntao & Cheng, Chuntian & Cao, Hui & Yang, Yuqi, 2025. "Capacity configuration of hydropower-PV complementary station that is robust to the inter-annual variability in streamflow and PV energy," Renewable Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125008250
    DOI: 10.1016/j.renene.2025.123163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125008250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.123163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. L. Most & K. van der Wiel & R. M. J. Benders & P. W. Gerbens-Leenes & R. Bintanja, 2024. "Temporally compounding energy droughts in European electricity systems with hydropower," Nature Energy, Nature, vol. 9(12), pages 1474-1484, December.
    2. John, Bony & Thomas, Rony N. & Varghese, James, 2020. "Integration of hydrokinetic turbine-PV-battery standalone system for tropical climate condition," Renewable Energy, Elsevier, vol. 149(C), pages 361-373.
    3. Mahmoudimehr, Javad & Shabani, Masoume, 2018. "Optimal design of hybrid photovoltaic-hydroelectric standalone energy system for north and south of Iran," Renewable Energy, Elsevier, vol. 115(C), pages 238-251.
    4. Li, Mingquan & Virguez, Edgar & Shan, Rui & Tian, Jialin & Gao, Shuo & Patiño-Echeverri, Dalia, 2022. "High-resolution data shows China’s wind and solar energy resources are enough to support a 2050 decarbonized electricity system," Applied Energy, Elsevier, vol. 306(PA).
    5. Dimanchev, Emil G. & Hodge, Joshua L. & Parsons, John E., 2021. "The role of hydropower reservoirs in deep decarbonization policy," Energy Policy, Elsevier, vol. 155(C).
    6. Wen, Xin & Sun, Yuanliang & Tan, Qiaofeng & Tang, Zhengyang & Wang, Zhenni & Liu, Zhehua & Ding, Ziyu, 2022. "Optimizing the sizes of wind and photovoltaic plants complementarily operating with cascade hydropower stations: Balancing risk and benefit," Applied Energy, Elsevier, vol. 306(PA).
    7. Cui, Ying & Yan, Da & Hong, Tianzhen & Xiao, Chan & Luo, Xuan & Zhang, Qi, 2017. "Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China," Applied Energy, Elsevier, vol. 195(C), pages 890-904.
    8. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    9. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Spatial and temporal assessments of complementarity for renewable energy resources in China," Energy, Elsevier, vol. 177(C), pages 262-275.
    10. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2019. "China’s large-scale hydropower system: operation characteristics, modeling challenge and dimensionality reduction possibilities," Renewable Energy, Elsevier, vol. 136(C), pages 805-818.
    11. Tan, Qiaofeng & Wen, Xin & Sun, Yuanliang & Lei, Xiaohui & Wang, Zhenni & Qin, Guanghua, 2021. "Evaluation of the risk and benefit of the complementary operation of the large wind-photovoltaic-hydropower system considering forecast uncertainty," Applied Energy, Elsevier, vol. 285(C).
    12. Pfenninger, Stefan, 2017. "Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability," Applied Energy, Elsevier, vol. 197(C), pages 1-13.
    13. Marianne Zeyringer & James Price & Birgit Fais & Pei-Hao Li & Ed Sharp, 2018. "Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather," Nature Energy, Nature, vol. 3(5), pages 395-403, May.
    14. Gonzato, Sebastian & Bruninx, Kenneth & Delarue, Erik, 2021. "Long term storage in generation expansion planning models with a reduced temporal scope," Applied Energy, Elsevier, vol. 298(C).
    15. Sebastian Sterl & Inne Vanderkelen & Celray James Chawanda & Daniel Russo & Robert J. Brecha & Ann Griensven & Nicole P. M. Lipzig & Wim Thiery, 2020. "Smart renewable electricity portfolios in West Africa," Nature Sustainability, Nature, vol. 3(9), pages 710-719, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Qian & Liu, Pan & Feng, Maoyuan & Cheng, Lei & Ming, Bo & Xie, Kang & Yang, Zhikai & Zhang, Xiaojing & Zheng, Yalian & Ye, Hao, 2025. "Leveraging a deep learning model to improve mid- and long-term operations of hydro-wind-photovoltaic complementary systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    2. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    3. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Lian, Jijian & Wang, Xin, 2022. "Capacity configuration and economic evaluation of a power system integrating hydropower, solar, and wind," Energy, Elsevier, vol. 259(C).
    4. Li, Xudong & Yang, Weijia & Liao, Yiwen & Zhang, Shushu & Zheng, Yang & Zhao, Zhigao & Tang, Maojia & Cheng, Yongguang & Liu, Pan, 2024. "Short-term risk-management for hydro-wind-solar hybrid energy system considering hydropower part-load operating characteristics," Applied Energy, Elsevier, vol. 360(C).
    5. Grochowicz, Aleksander & van Greevenbroek, Koen & Benth, Fred Espen & Zeyringer, Marianne, 2023. "Intersecting near-optimal spaces: European power systems with more resilience to weather variability," Energy Economics, Elsevier, vol. 118(C).
    6. Ramirez Camargo, Luis & Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang, 2019. "Assessment of on-site steady electricity generation from hybrid renewable energy systems in Chile," Applied Energy, Elsevier, vol. 250(C), pages 1548-1558.
    7. Hilbers, Adriaan P. & Brayshaw, David J. & Gandy, Axel, 2023. "Reducing climate risk in energy system planning: A posteriori time series aggregation for models with storage," Applied Energy, Elsevier, vol. 334(C).
    8. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Jia, Zebin, 2024. "Assessing hydropower capability for accommodating variable renewable energy considering peak shaving of multiple power grids," Energy, Elsevier, vol. 305(C).
    9. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    10. Zhao, Hongye & Liao, Shengli & Ma, Xiangyu & Fang, Zhou & Cheng, Chuntian & Zhang, Zheng, 2024. "Short-term peak-shaving scheduling of a hydropower-dominated hydro-wind-solar photovoltaic hybrid system considering a shared multienergy coupling transmission channel," Applied Energy, Elsevier, vol. 372(C).
    11. Jimenez, I. Sanchez & Ribó-Pérez, D. & Cvetkovic, M. & Kochems, J. & Schimeczek, C. & de Vries, L.J., 2024. "Can an energy only market enable resource adequacy in a decarbonized power system? A co-simulation with two agent-based-models," Applied Energy, Elsevier, vol. 360(C).
    12. Martin Kittel & Alexander Roth & Wolf-Peter Schill, 2024. "Coping with the Dunkelflaute: Power system implications of variable renewable energy droughts in Europe," Papers 2411.17683, arXiv.org, revised Nov 2025.
    13. Simon, Emanuel & Schaeffer, Roberto & Szklo, Alexandre, 2025. "A solar and wind clustering framework with downscaling and bias correction of reanalysis data using singular value decomposition," Energy, Elsevier, vol. 319(C).
    14. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Jurasz, Jakub & Zhang, Yi & Lu, Jia, 2023. "Exploring the transition role of cascade hydropower in 100% decarbonized energy systems," Energy, Elsevier, vol. 279(C).
    15. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Shen, Jianjian & Wu, Xinyu & Su, Huaying, 2022. "Preliminary feasibility analysis for remaking the function of cascade hydropower stations to enhance hydropower flexibility: A case study in China," Energy, Elsevier, vol. 260(C).
    16. Li, Yan & Ming, Bo & Huang, Qiang & Wang, Yimin & Liu, Pan & Guo, Pengcheng, 2022. "Identifying effective operating rules for large hydro–solar–wind hybrid systems based on an implicit stochastic optimization framework," Energy, Elsevier, vol. 245(C).
    17. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    18. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    19. Xiong, Jiang & Liao, Shengli & Liu, Benxi & Cheng, Chuntian & Li, Shushan & Wang, Huan, 2025. "A search algorithm that couples physical rules for balancing wind and solar output fluctuations via hydropower in ultra-short-term scheduling," Energy, Elsevier, vol. 330(C).
    20. Wang, Zhenni & Tan, Qiaofeng & Wen, Xin & Su, Huaying & Fang, Guohua & Wang, Hao, 2025. "Capacity optimization of retrofitting cascade hydropower plants with pumping stations for renewable energy integration: A case study," Applied Energy, Elsevier, vol. 377(PC).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125008250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.