IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v244y2025ics0960148125002423.html
   My bibliography  Save this article

Incorporating GO-CS-2-aminothiazole-SO3H nanoparticles into sulfonated PES for improved MFC performance in power generation

Author

Listed:
  • Shadman, Pegah
  • Shakeri, Alireza
  • Zinadini, Sirus

Abstract

This study aims to design a novel composite polymer membrane to enhance Microbial Fuel Cell (MFC) performance. For this purpose, composite polymer membranes were synthesized by incorporating the Graphene oxide/Chitosan/2-aminothiazole/SO3H (GO-CS-2-aminothiazole-SO3H) in the sulfonated polyethersulfone (SPES) for electricity generation and wastewater treatment. The fabricated composite membranes (SPES/GO-CS-2-aminothiazole-SO3H) were analyzed using various methods. By embedding secondary amine (R'R″NH) and sulfonic acid (-SO3H) groups into the membranes, MFC performance, and membrane selectivity were ameliorated. A comparably remarkable power density (76.77 mW m−2) was obtained by utilizing the SPES/GO-CS-2-aminothiazole-SO3H 0.1 wt% as the membrane in double-chamber MFC, significantly higher than the result obtained for the SPES (3.19 mW m−2) and SPES/GO-CS 0.1 wt% (22.67 mW m−2) membranes. With the composite membrane, SPES/GO-CS-2-aminothiazole-SO3H 0.1 wt% in MFC, the COD removal efficiency of 89.54 % and a coulombic efficiency of 84.18 % were achieved. The results reveal that SPES/GO-CS-2-aminothiazole-SO3H 0.1 % can be considered a favorable membrane for MFC application.

Suggested Citation

  • Shadman, Pegah & Shakeri, Alireza & Zinadini, Sirus, 2025. "Incorporating GO-CS-2-aminothiazole-SO3H nanoparticles into sulfonated PES for improved MFC performance in power generation," Renewable Energy, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125002423
    DOI: 10.1016/j.renene.2025.122580
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125002423
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zinadini, S. & Zinatizadeh, A.A. & Rahimi, M. & Vatanpour, V. & Bahrami, K., 2017. "Energy recovery and hygienic water production from wastewater using an innovative integrated microbial fuel cell–membrane separation process," Energy, Elsevier, vol. 141(C), pages 1350-1362.
    2. Zinadini, S. & Zinatizadeh, A.A. & Rahimi, M. & Vatanpour, V. & Rahimi, Z., 2017. "High power generation and COD removal in a microbial fuel cell operated by a novel sulfonated PES/PES blend proton exchange membrane," Energy, Elsevier, vol. 125(C), pages 427-438.
    3. Slate, Anthony J. & Whitehead, Kathryn A. & Brownson, Dale A.C. & Banks, Craig E., 2019. "Microbial fuel cells: An overview of current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 60-81.
    4. Hongjun Ni & Kaixuan Wang & Shuaishuai Lv & Xingxing Wang & Lu Zhuo & Jiaqiao Zhang, 2020. "Effects of Concentration Variations on the Performance and Microbial Community in Microbial Fuel Cell Using Swine Wastewater," Energies, MDPI, vol. 13(9), pages 1-11, May.
    5. Shabani, Mehri & Younesi, Habibollah & Pontié, Maxime & Rahimpour, Ahmad & Rahimnejad, Mostafa & Guo, Hanxiao & Szymczyk, Anthony, 2021. "Enhancement of microbial fuel cell efficiency by incorporation of graphene oxide and functionalized graphene oxide in sulfonated polyethersulfone membrane," Renewable Energy, Elsevier, vol. 179(C), pages 788-801.
    6. Ghasemi, Mostafa & Wan Daud, Wan Ramli & Alam, Javed & Ilbeygi, Hamid & Sedighi, Mehdi & Ismail, Ahmad Fauzi & Yazdi, Mohammad H. & Aljlil, Saad A., 2016. "Treatment of two different water resources in desalination and microbial fuel cell processes by poly sulfone/Sulfonated poly ether ether ketone hybrid membrane," Energy, Elsevier, vol. 96(C), pages 303-313.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahid, Kanwal & Ramasamy, Deepika Lakshmi & Haapasaari, Sampo & Sillanpää, Mika & Pihlajamäki, Arto, 2021. "Stainless steel and carbon brushes as high-performance anodes for energy production and nutrient recovery using the microbial nutrient recovery system," Energy, Elsevier, vol. 233(C).
    2. Shirvani, Bita & Rahimi, Masoud & Zinadini, Sirus, 2024. "Exploring the potential of anti-bacterial and conductive ZnO–Al2O3/SPES proton exchange membrane applied in MFC for sustainable energy generation and sugar beet industry effluent treatment," Renewable Energy, Elsevier, vol. 231(C).
    3. Gao, Ningshengjie & Qu, Botong & Xing, Zhenyu & Ji, Xiulei & Zhang, Eugene & Liu, Hong, 2018. "Development of novel polyethylene air-cathode material for microbial fuel cells," Energy, Elsevier, vol. 155(C), pages 763-771.
    4. Mohamed, Hend Omar & Talas, Sawsan Abo & Sayed, Enas T. & Park, Sung-Gwan & Eisa, Tasnim & Abdelkareem, Mohammad Ali & Fadali, Olfat A. & Chae, Kyu-Jung & Castaño, Pedro, 2021. "Enhancing power generation in microbial fuel cell using tungsten carbide on reduced graphene oxide as an efficient anode catalyst material," Energy, Elsevier, vol. 229(C).
    5. Chen, Bor-Yann & Liao, Jia-Hui & Hsueh, Chung-Chuan & Qu, Ziwei & Hsu, An-Wei & Chang, Chang-Tang & Zhang, Shuping, 2018. "Deciphering biostimulation strategy of using medicinal herbs and tea extracts for bioelectricity generation in microbial fuel cells," Energy, Elsevier, vol. 161(C), pages 1042-1054.
    6. Zinadini, S. & Zinatizadeh, A.A. & Rahimi, M. & Vatanpour, V. & Bahrami, K., 2017. "Energy recovery and hygienic water production from wastewater using an innovative integrated microbial fuel cell–membrane separation process," Energy, Elsevier, vol. 141(C), pages 1350-1362.
    7. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    8. Mostafa Ghasemi & Mehdi Sedighi & Yie Hua Tan, 2021. "Carbon Nanotube/Pt Cathode Nanocomposite Electrode in Microbial Fuel Cells for Wastewater Treatment and Bioenergy Production," Sustainability, MDPI, vol. 13(14), pages 1-13, July.
    9. Asiah Sukri & Raihan Othman & Firdaus Abd-Wahab & Noraini M. Noor, 2021. "Self-Sustaining Bioelectrochemical Cell from Fungal Degradation of Lignin-Rich Agrowaste," Energies, MDPI, vol. 14(8), pages 1-11, April.
    10. Choudhury, Payel & Uday, Uma Shankar Prasad & Mahata, Nibedita & Nath Tiwari, Onkar & Narayan Ray, Rup & Kanti Bandyopadhyay, Tarun & Bhunia, Biswanath, 2017. "Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 372-389.
    11. Xin, Shuaishuai & Shen, Jianguo & Liu, Guocheng & Chen, Qinghua & Xiao, Zhou & Zhang, Guodong & Xin, Yanjun, 2020. "High electricity generation and COD removal from cattle wastewater in microbial fuel cells with 3D air cathode employed non-precious Cu2O/reduced graphene oxide as cathode catalyst," Energy, Elsevier, vol. 196(C).
    12. Liu, Hong-zhou & Chen, Tie-zhu & Wang, Nan & Zhang, Yu-rui & Li, Jian-chang, 2024. "A new strategy for improving MFC power output by shared electrode MFC–MEC coupling," Applied Energy, Elsevier, vol. 359(C).
    13. Ziliang Xiao & Shaoliang Zhang & Pengke Yan & Jiping Huo & Muhammad Aurangzeib, 2022. "Microbial Community and Their Potential Functions after Natural Vegetation Restoration in Gullies of Farmland in Mollisols of Northeast China," Land, MDPI, vol. 11(12), pages 1-18, December.
    14. Eisa, Tasnim & Park, Sung-Gwan & Mohamed, Hend Omar & Abdelkareem, Mohammad Ali & Lee, Jieun & Yang, Euntae & Castaño, Pedro & Chae, Kyu-Jung, 2021. "Outstanding performance of direct urea/hydrogen peroxide fuel cell based on precious metal-free catalyst electrodes," Energy, Elsevier, vol. 228(C).
    15. Tawalbeh, Muhammad & Al-Othman, Amani & Singh, Karnail & Douba, Ikram & Kabakebji, Dania & Alkasrawi, Malek, 2020. "Microbial desalination cells for water purification and power generation: A critical review," Energy, Elsevier, vol. 209(C).
    16. Liu, Shu-Hui & Fu, Sih-Hua & Chen, Chia-Ying & Lin, Chi-Wen, 2020. "Enhanced processing of exhaust gas and power generation by connecting mini-tubular microbial fuel cells in series with a biotrickling filter," Renewable Energy, Elsevier, vol. 156(C), pages 342-348.
    17. Shajjadur Rahman Shajid & Monjur Mourshed & Md. Golam Kibria & Bahman Shabani, 2025. "The Potential of Microbial Fuel Cells as a Dual Solution for Sustainable Wastewater Treatment and Energy Generation: A Case Study," Energies, MDPI, vol. 18(14), pages 1-37, July.
    18. Alberto González-Martínez & Miguel de Simón-Martín & Roberto López & Raquel Táboas-Fernández & Antonio Bernardo-Sánchez, 2019. "Remediation of Potential Toxic Elements from Wastes and Soils: Analysis and Energy Prospects," Sustainability, MDPI, vol. 11(12), pages 1-27, June.
    19. Ghasemi, Mostafa & Rezk, Hegazy, 2024. "Performance improvement of microbial fuel cell using experimental investigation and fuzzy modelling," Energy, Elsevier, vol. 286(C).
    20. Shabani, Mehri & Younesi, Habibollah & Pontié, Maxime & Rahimpour, Ahmad & Rahimnejad, Mostafa & Guo, Hanxiao & Szymczyk, Anthony, 2021. "Enhancement of microbial fuel cell efficiency by incorporation of graphene oxide and functionalized graphene oxide in sulfonated polyethersulfone membrane," Renewable Energy, Elsevier, vol. 179(C), pages 788-801.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125002423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.