IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v244y2025ics0960148125001703.html
   My bibliography  Save this article

Controls on the temperature of the produced fluid in a double well ATES system

Author

Listed:
  • Lepinay, Emma
  • Woods, Andrew W.

Abstract

We investigate the temperature evolution of a double-well low-temperature aquifer thermal energy storage system consisting of a hot and a cold permeable reservoir in the subsurface. The wells are used cyclically to provide a supply of thermal energy in the winter and a thermal sink in the summer. The system is paired with a heat pump at the surface which can raise the temperature of the aquifer fluid, to meet the heating demand in the winter, and can also drop the temperature of the aquifer fluid, to meet the cooling demand in the summer. These systems provide a low-carbon solution for space heating and cooling, which currently makes up over a third of the greenhouse gas emissions in the UK. Our results show how fundamental modelling of the complex heat transfer in the geological formation can help identify optimal operating principles for ATES systems. Our modelling focuses on coupled wells where the extraction temperature of one well, as well as the temperature change imposed by the heat pump, determines the injection temperature of the other well. Our results highlight that the heat transfer between the injected volume and the subsurface leads to a continuous change in the extraction temperature during each cycle. We find that after many cycles, the mean extraction temperatures of the hot and cold wells tend to ΔT2 and −ΔT2, respectively, where ΔT is the temperature difference between the extraction temperature of one well and the injection temperature of the other well. Furthermore, we find that the season in which the system is started has a significant impact on the extraction temperatures of both wells in the first 5–10 cycles. If a system is started in the winter, to initially provide space heating, we observe the extraction temperature of both wells gradually increase from cycle to cycle towards the equilibrium temperatures. But if a system is started in the summer, to initially provide space cooling, the extraction temperatures gradually cool down towards the equilibrium temperatures. We compare the electricity usage in the heating season of a double well ATES system with a simple system which extracts at the ambient temperature of the aquifer. We show that a double well system started in the summer can have an average reduction of 9.9% in its electricity usage for heating, over 20 years. While, a system started in the winter can have an average reduction of 7.1 %, over 20 years. Our modelling therefore provides a framework to optimise operation of such systems.

Suggested Citation

  • Lepinay, Emma & Woods, Andrew W., 2025. "Controls on the temperature of the produced fluid in a double well ATES system," Renewable Energy, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125001703
    DOI: 10.1016/j.renene.2025.122508
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125001703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125001703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.