Experimental optimization of an absorption-compression heat pump with wet compression for large temperature glide industrial applications
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2025.122531
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
- Zhang, Shengjun & Wang, Huaixin & Guo, Tao, 2010. "Experimental investigation of moderately high temperature water source heat pump with non-azeotropic refrigerant mixtures," Applied Energy, Elsevier, vol. 87(5), pages 1554-1561, May.
- Kim, Jiyoung & Park, Seong-Ryong & Baik, Young-Jin & Chang, Ki-Chang & Ra, Ho-Sang & Kim, Minsung & Kim, Yongchan, 2013. "Experimental study of operating characteristics of compression/absorption high-temperature hybrid heat pump using waste heat," Renewable Energy, Elsevier, vol. 54(C), pages 13-19.
- Wu, Wei & Shi, Wenxing & Wang, Jian & Wang, Baolong & Li, Xianting, 2016. "Experimental investigation on NH3–H2O compression-assisted absorption heat pump (CAHP) for low temperature heating under lower driving sources," Applied Energy, Elsevier, vol. 176(C), pages 258-271.
- Farshi, L. Garousi & Khalili, S., 2019. "Thermoeconomic analysis of a new ejector boosted hybrid heat pump (EBHP) and comparison with three conventional types of heat pumps," Energy, Elsevier, vol. 170(C), pages 619-635.
- Hamid, Khalid & Ren, Shuai & Tolstorebrov, Ignat & Hafner, Armin & Wang, Chi-Chuan & Sajjad, Uzair & Eikevik, Trygve M., 2025. "Development and experimental assessment of oil free combine absorption-compression heat pump with NH3/H2O mixture working fluid," Applied Energy, Elsevier, vol. 383(C).
- Jung, Chung Woo & Song, Joo Young & Kang, Yong Tae, 2018. "Study on ammonia/water hybrid absorption/compression heat pump cycle to produce high temperature process water," Energy, Elsevier, vol. 145(C), pages 458-467.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Deng, Na & Cao, Feng & Wang, Chi-Chuan, 2022. "A review and perspective on industry high-temperature heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Liu, Changchun & Han, Wei & Xue, Xiaodong, 2022. "Experimental investigation of a high-temperature heat pump for industrial steam production," Applied Energy, Elsevier, vol. 312(C).
- Hamid, Khalid & Ren, Shuai & Tolstorebrov, Ignat & Hafner, Armin & Wang, Chi-Chuan & Sajjad, Uzair & Eikevik, Trygve M., 2025. "Development and experimental assessment of oil free combine absorption-compression heat pump with NH3/H2O mixture working fluid," Applied Energy, Elsevier, vol. 383(C).
- Zhang, Xi & Hu, Bin & Wang, Ruzhu & Xu, Zhenyuan, 2024. "Performance enhancement of hybrid absorption-compression heat pump via internal heat recovery," Energy, Elsevier, vol. 286(C).
- Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2021. "An air-source hybrid absorption-compression heat pump with large temperature lift," Applied Energy, Elsevier, vol. 291(C).
- Ji, Qiang & Che, Chunwen & Yin, Yonggao & Huang, Gongsheng & Pan, Tengxiang & Zhao, Donglin & Wang, Yikai, 2024. "Optimizing working fluids for advancing industrial heating performance of compression-absorption cascade heat pump," Applied Energy, Elsevier, vol. 376(PB).
- Jouhara, Hussam & Żabnieńska-Góra, Alina & Delpech, Bertrand & Olabi, Valentina & El Samad, Tala & Sayma, Abdulnaser, 2024. "High-temperature heat pumps: Fundamentals, modelling approaches and applications," Energy, Elsevier, vol. 303(C).
- Guo, Hao & Gong, Maoqiong & Qin, Xiaoyu, 2019. "Performance analysis of a modified subcritical zeotropic mixture recuperative high-temperature heat pump," Applied Energy, Elsevier, vol. 237(C), pages 338-352.
- Li, Xiaoqiong & Wang, Xiaoyan & Zhang, Yufeng & Fang, Lei & Deng, Na & Zhang, Yan & Jin, Zhendong & Yu, Xiaohui & Yao, Sheng, 2020. "Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors," Applied Energy, Elsevier, vol. 261(C).
- Wei, Junzhuo & Wu, Di & Wang, Ruzhu, 2025. "A Multi-Objective evolutionary algorithm-based optimization framework for hybrid absorption-compression heat pump systems," Applied Energy, Elsevier, vol. 382(C).
- Wu, Di & Wei, Junzhuo & Wang, R.Z., 2025. "Performance investigation of a new hybrid high-temperature heat PUMP with natural water medium," Energy, Elsevier, vol. 314(C).
- You, Jinfang & Zhang, Xi & Gao, Jintong & Wang, Ruzhu & Xu, Zhenyuan, 2024. "Entransy based heat exchange irreversibility analysis for a hybrid absorption-compression heat pump cycle," Energy, Elsevier, vol. 289(C).
- Wu, Di & Hu, Bin & Wang, R.Z., 2021. "Vapor compression heat pumps with pure Low-GWP refrigerants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Kumar, Anil & Modi, Anish, 2023. "Energy and exergy analysis of a novel ejector-assisted compression–absorption–resorption refrigeration system," Energy, Elsevier, vol. 263(PC).
- Zhang, Jing & Zhang, Hong-Hu & He, Ya-Ling & Tao, Wen-Quan, 2016. "A comprehensive review on advances and applications of industrial heat pumps based on the practices in China," Applied Energy, Elsevier, vol. 178(C), pages 800-825.
- Uusitalo, Antti & Turunen-Saaresti, Teemu & Honkatukia, Juha & Tiainen, Jonna & Jaatinen-Värri, Ahti, 2020. "Numerical analysis of working fluids for large scale centrifugal compressor driven cascade heat pumps upgrading waste heat," Applied Energy, Elsevier, vol. 269(C).
- Razmi, Amir Reza & Arabkoohsar, Ahmad & Nami, Hossein, 2020. "Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system," Energy, Elsevier, vol. 210(C).
- Cox, Jordan & Belding, Scott & Lowder, Travis, 2022. "Application of a novel heat pump model for estimating economic viability and barriers of heat pumps in dairy applications in the United States," Applied Energy, Elsevier, vol. 310(C).
- Bai, Tao & Yan, Gang & Yu, Jianlin, 2019. "Thermodynamic assessment of a condenser outlet split ejector-based high temperature heat pump cycle using various low GWP refrigerants," Energy, Elsevier, vol. 179(C), pages 850-862.
- Wu, Wei & Zhai, Chong & Huang, Si-Min & Sui, Yunren & Sui, Zengguang & Ding, Zhixiong, 2022. "A hybrid H2O/IL absorption and CO2 compression air-source heat pump for ultra-low ambient temperatures," Energy, Elsevier, vol. 239(PB).
More about this item
Keywords
High temperature heat pump; Absorption–compression; Oil free twin-screw compressor; NH3/H2O mixture; Osenbrück cycle; Large Temperature Glide;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125001934. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.