IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v242y2025ics0960148125000722.html
   My bibliography  Save this article

Assessment of tidal energy potential from low-velocity tidal flows in the Indian Sundarbans utilizing validated hydrodynamic model and tidal turbine technology

Author

Listed:
  • Bhui, Koushik
  • Hazra, Sugata
  • Bhadra, Tuhin

Abstract

The ecologically sensitive, fluvio-tidal deltaic islands of the Sundarbans possess significant potential for tidal energy extraction. Tidal energy, a reliable renewable source, offers an environmentally sustainable corridor for green development in the region. This study assesses the feasibility of harnessing tidal energy from low-velocity tidal flows using vertical arrays of stand-alone ducted turbines in the Indian Sundarbans. Tidal current data were extracted from a validated hydrodynamic model based on selective hydrographic surveys conducted across several locations in the Indian Sundarbans. A turbine design consisting of 9 ducted turbines, each with a rotor diameter of 2.66 m and a diffuser diameter of 4 m, is proposed based on flow dynamics observed in the creeks and channels of the region. Theoretical estimates indicate annual energy outputs of 107.86 MWh at Site 4 in Durgaduani Creek, 53.64 MWh at Site 5, 49.68 MWh at Site 2 in the Matla River, 25.92 MWh at Site 1 in Chaltabani Khal, and 16.53 MWh at Site 3 in the Thakuran River, which capable of powering approximately 7896 households. The study contributes to the knowledge base of renewable energy development in ecologically sensitive areas like deltas with mangroves and points to sustainable energy solutions for green development.

Suggested Citation

  • Bhui, Koushik & Hazra, Sugata & Bhadra, Tuhin, 2025. "Assessment of tidal energy potential from low-velocity tidal flows in the Indian Sundarbans utilizing validated hydrodynamic model and tidal turbine technology," Renewable Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148125000722
    DOI: 10.1016/j.renene.2025.122410
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125000722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122410?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Long & Lam, Wei-Haur, 2015. "A review of survivability and remedial actions of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 891-900.
    2. Stylianos Argyrios Pitsikoulis & Sravya Tekumalla & Anurag Sharma & Wai Leong Eugene Wong & Serkan Turkmen & Pengfei Liu, 2023. "Cavitation Hydrodynamic Performance of 3-D Printed Highly Skewed Stainless Steel Tidal Turbine Rotors," Energies, MDPI, vol. 16(9), pages 1-26, April.
    3. Bahaj, AbuBakr S., 2011. "Generating electricity from the oceans," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3399-3416, September.
    4. Radfar, Soheil & Panahi, Roozbeh & Javaherchi, Teymour & Filom, Siyavash & Mazyaki, Ahmad Rezaee, 2017. "A comprehensive insight into tidal stream energy farms in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 323-338.
    5. Tripathi, Lata & Mishra, A.K. & Dubey, Anil Kumar & Tripathi, C.B. & Baredar, Prashant, 2016. "Renewable energy: An overview on its contribution in current energy scenario of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 226-233.
    6. Bhandari, Amit K. & Jana, Chinmoy, 2010. "A comparative evaluation of household preferences for solar photovoltaic standalone and mini-grid system: An empirical study in a costal village of Indian Sundarban," Renewable Energy, Elsevier, vol. 35(12), pages 2835-2838.
    7. Ahmadian, Reza & Falconer, Roger & Bockelmann-Evans, Bettina, 2012. "Far-field modelling of the hydro-environmental impact of tidal stream turbines," Renewable Energy, Elsevier, vol. 38(1), pages 107-116.
    8. Wei-Bo Chen & Wen-Cheng Liu & Ming-Hsi Hsu, 2013. "Modeling Evaluation of Tidal Stream Energy and the Impacts of Energy Extraction on Hydrodynamics in the Taiwan Strait," Energies, MDPI, vol. 6(4), pages 1-13, April.
    9. Myers, L. & Bahaj, A.S., 2005. "Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race," Renewable Energy, Elsevier, vol. 30(11), pages 1713-1731.
    10. Soumen Ghosh & Biswaranjan Mistri, 2023. "Cyclone-induced coastal vulnerability, livelihood challenges and mitigation measures of Matla–Bidya inter-estuarine area, Indian Sundarban," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3857-3878, April.
    11. Blunden, L.S. & Bahaj, A.S., 2006. "Initial evaluation of tidal stream energy resources at Portland Bill, UK," Renewable Energy, Elsevier, vol. 31(2), pages 121-132.
    12. Pillai, Indu R. & Banerjee, Rangan, 2009. "Renewable energy in India: Status and potential," Energy, Elsevier, vol. 34(8), pages 970-980.
    13. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "GIS based multi-criteria assessment of tidal stream power potential: A case study for Georgia, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2310-2321, June.
    14. Yiyi Xu & Juin Ming Foong & Pengfei Liu, 2023. "Hydrodynamic Effect of Highly Skewed Horizontal-Axis Tidal Turbine (HATT) Rotors," Energies, MDPI, vol. 16(8), pages 1-16, April.
    15. Simone Giorgi & John V. Ringwood, 2013. "Can Tidal Current Energy Provide Base Load?," Energies, MDPI, vol. 6(6), pages 1-19, June.
    16. Chen, Falin & Lu, Shyi-Min & Tseng, Kuo-Tung & Lee, Si-Chen & Wang, Eric, 2010. "Assessment of renewable energy reserves in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2511-2528, December.
    17. Lewis, M. & Neill, S.P. & Robins, P.E. & Hashemi, M.R., 2015. "Resource assessment for future generations of tidal-stream energy arrays," Energy, Elsevier, vol. 83(C), pages 403-415.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    2. Iglesias, G. & Sánchez, M. & Carballo, R. & Fernández, H., 2012. "The TSE index – A new tool for selecting tidal stream sites in depth-limited regions," Renewable Energy, Elsevier, vol. 48(C), pages 350-357.
    3. Sangiuliano, Stephen Joseph, 2017. "Turning of the tides: Assessing the international implementation of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 971-989.
    4. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Energy production from tidal currents in an estuary: A comparative study of floating and bottom-fixed turbines," Energy, Elsevier, vol. 77(C), pages 802-811.
    5. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2014. "Optimal phasing of the European tidal stream resource using the greedy algorithm with penalty function," Energy, Elsevier, vol. 73(C), pages 997-1006.
    6. Álvarez, M. & Ramos, V. & Carballo, R. & Arean, N. & Torres, M. & Iglesias, G., 2020. "The influence of dredging for locating a tidal stream energy farm," Renewable Energy, Elsevier, vol. 146(C), pages 242-253.
    7. Tang, H.S. & Qu, K. & Chen, G.Q. & Kraatz, S. & Aboobaker, N. & Jiang, C.B., 2014. "Potential sites for tidal power generation: A thorough search at coast of New Jersey, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 412-425.
    8. Marta-Almeida, Martinho & Cirano, Mauro & Guedes Soares, Carlos & Lessa, Guilherme C., 2017. "A numerical tidal stream energy assessment study for Baía de Todos os Santos, Brazil," Renewable Energy, Elsevier, vol. 107(C), pages 271-287.
    9. Goh, Hooi-Bein & Lai, Sai-Hin & Jameel, Mohammed & Teh, Hee-Min, 2020. "Potential of coastal headlands for tidal energy extraction and the resulting environmental effects along Negeri Sembilan coastlines: A numerical simulation study," Energy, Elsevier, vol. 192(C).
    10. De Dominicis, Michela & O'Hara Murray, Rory & Wolf, Judith, 2017. "Multi-scale ocean response to a large tidal stream turbine array," Renewable Energy, Elsevier, vol. 114(PB), pages 1160-1179.
    11. Goward Brown, Alice J. & Neill, Simon P. & Lewis, Matthew J., 2017. "Tidal energy extraction in three-dimensional ocean models," Renewable Energy, Elsevier, vol. 114(PA), pages 244-257.
    12. Nash, S. & Phoenix, A., 2017. "A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 648-662.
    13. Bai, Xu & Sun, Meng & Zhang, Wen & Wang, Jialu, 2024. "A novel elli-circ oscillator applied in VIVACE converter and its vibration characteristics and energy harvesting efficiency," Energy, Elsevier, vol. 296(C).
    14. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    15. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M. & Jiang, Lide & French, Steven P. & Shi, Xuan & Smith, Brennan T. & Neary, Vincent S. & Stewart, Kevin M., 2012. "National geodatabase of tidal stream power resource in USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3326-3338.
    16. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    17. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    18. Work, Paul A. & Haas, Kevin A. & Defne, Zafer & Gay, Thomas, 2013. "Tidal stream energy site assessment via three-dimensional model and measurements," Applied Energy, Elsevier, vol. 102(C), pages 510-519.
    19. Brown, S.A. & Ransley, E.J. & Xie, N. & Monk, K. & De Angelis, G.M. & Nicholls-Lee, R. & Guerrini, E. & Greaves, D.M., 2021. "On the impact of motion-thrust coupling in floating tidal energy applications," Applied Energy, Elsevier, vol. 282(PB).
    20. María José Suárez-López & Rodolfo Espina-Valdés & Víctor Manuel Fernández Pacheco & Antonio Navarro Manso & Eduardo Blanco-Marigorta & Eduardo Álvarez-Álvarez, 2019. "A Review of Software Tools to Study the Energetic Potential of Tidal Currents," Energies, MDPI, vol. 12(9), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148125000722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.