IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics0960148125000254.html
   My bibliography  Save this article

Energy management for electric bus charging station with facilitated second-life batteries

Author

Listed:
  • Wei, Renjie
  • Wang, Yishen
  • Zhou, Fei
  • Chen, Xi
  • Chai, Bo
  • Liu, Jinbo
  • Wang, Yanan
  • Jin, Hongyang

Abstract

Electric buses (EBs) are playing an important role in transportation electrification as a pathway towards net zero carbon emissions. In this paper, a stochastic EB charging station model is developed with a centralized day-ahead scheduling (DAS) control of EB charging. The control strategy objective is to minimize the total costs, including the energy purchased cost and the second-life battery (SLB) degradation cost. The charging demand is estimated based on the bus timetable and related historical data. To improve the performance of the control strategy, a second-life battery (SLB) energy storage system is adopted. Furthermore, the SLB system is controlled to provide peak demand flexibility services for distribution network operators to relieve network congestions. Three different control algorithms, heuristic control algorithm, DAS without SLB energy storage and DAS with SLB energy storage, are analyzed in the case studies. Numerical results demonstrate that the proposed DAS can significantly reduce both the operational costs and the charging demand during peak time. In addition, the adoption of SLB also improves the fault tolerance of the DAS and provides contracted flexibility services without affecting EB charging.

Suggested Citation

  • Wei, Renjie & Wang, Yishen & Zhou, Fei & Chen, Xi & Chai, Bo & Liu, Jinbo & Wang, Yanan & Jin, Hongyang, 2025. "Energy management for electric bus charging station with facilitated second-life batteries," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148125000254
    DOI: 10.1016/j.renene.2025.122363
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125000254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steckel, Tobiah & Kendall, Alissa & Ambrose, Hanjiro, 2021. "Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems," Applied Energy, Elsevier, vol. 300(C).
    2. Sujin Kim & Raghu Pasupathy & Shane G. Henderson, 2015. "A Guide to Sample Average Approximation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 207-243, Springer.
    3. Assunção, André & Moura, Pedro S. & de Almeida, Aníbal T., 2016. "Technical and economic assessment of the secondary use of repurposed electric vehicle batteries in the residential sector to support solar energy," Applied Energy, Elsevier, vol. 181(C), pages 120-131.
    4. Minfang Huang & Jing-Quan Li, 2016. "The Shortest Path Problems in Battery-Electric Vehicle Dispatching with Battery Renewal," Sustainability, MDPI, vol. 8(7), pages 1-17, June.
    5. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    6. Hongwen He & Rui Xiong & Jinxin Fan, 2011. "Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach," Energies, MDPI, vol. 4(4), pages 1-17, March.
    7. Steckel, Tobiah & Kendall, Alissa & Ambrose, Hanjiro, 2021. "Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems," Institute of Transportation Studies, Working Paper Series qt2ws2c6jw, Institute of Transportation Studies, UC Davis.
    8. Li, Pengshun & Zhang, Yi & Zhang, Yi & Zhang, Kai & Jiang, Mengyan, 2021. "The effects of dynamic traffic conditions, route characteristics and environmental conditions on trip-based electricity consumption prediction of electric bus," Energy, Elsevier, vol. 218(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, He & Hu, Jiayao & Yang, Ying, 2025. "Towards a circular supply chain for retired electric vehicle batteries: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 282(C).
    2. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Wei He & Rujie Liu & Tao Han & Jicheng Zhang & Yixun Lei & Shan Xu & Hongwei Yu & Zhu Li, 2024. "Cooperative Construction of Renewable Energy and Energy Storage System: Research on Evolutionary Game Model Based on Continuous Strategy and Random Disturbance," Energies, MDPI, vol. 17(23), pages 1-24, November.
    4. Song, Qianqian & Wang, Bo & Wang, Zhaohua & Wen, Lei, 2024. "Multi-objective capacity configuration optimization of the combined wind - Storage system considering ELCC and LCOE," Energy, Elsevier, vol. 301(C).
    5. Pierro, Marco & Cornaro, Cristina & Moser, David & Perez, Richard & Perez, Marc & Zambotti, Stefano & Barchi, Grazia, 2024. "Ground-breaking approach to enabling fully solar renewable energy communities," Renewable Energy, Elsevier, vol. 237(PA).
    6. Armin Razmjoo & Arezoo Ghazanfari & Poul Alberg Østergaard & Mehdi Jahangiri & Andreas Sumper & Sahar Ahmadzadeh & Reza Eslamipoor, 2024. "Moving Toward the Expansion of Energy Storage Systems in Renewable Energy Systems—A Techno-Institutional Investigation with Artificial Intelligence Consideration," Sustainability, MDPI, vol. 16(22), pages 1-25, November.
    7. Hua Song & Huaizhi Chen & Yanbo Wang & Xiang-E Sun, 2024. "An Overview About Second-Life Battery Utilization for Energy Storage: Key Challenges and Solutions," Energies, MDPI, vol. 17(23), pages 1-26, December.
    8. Bai, Hanyu & Lei, Shunbo & Geng, Sijia & Hu, Xiaosong & Li, Zhaojian & Song, Ziyou, 2024. "Techno-economic assessment of isolated micro-grids with second-life batteries: A reliability-oriented iterative design framework," Applied Energy, Elsevier, vol. 364(C).
    9. Grazia Barchi & Marco Pierro & Mattia Secchi & David Moser, 2025. "Fully Solar Residential Energy Community: A Study on the Feasibility in the Italian Context," Energies, MDPI, vol. 18(8), pages 1-15, April.
    10. Al-Wreikat, Yazan & Attfield, Emily Kate & Sodré, José Ricardo, 2022. "Model for payback time of using retired electric vehicle batteries in residential energy storage systems," Energy, Elsevier, vol. 259(C).
    11. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    12. Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2024. "Managing flexibility in stochastic multi-level lot sizing problem with service level constraints," Omega, Elsevier, vol. 122(C).
    13. Alexandros Nikolian & Yousef Firouz & Rahul Gopalakrishnan & Jean-Marc Timmermans & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2016. "Lithium Ion Batteries—Development of Advanced Electrical Equivalent Circuit Models for Nickel Manganese Cobalt Lithium-Ion," Energies, MDPI, vol. 9(5), pages 1-23, May.
    14. Zhang, Chenxi & Yang, Yi & Wang, Yunqi & Qiu, Jing & Zhao, Junhua, 2024. "Auction-based peer-to-peer energy trading considering echelon utilization of retired electric vehicle second-life batteries," Applied Energy, Elsevier, vol. 358(C).
    15. Sandra Castano-Solis & Daniel Serrano-Jimenez & Lucia Gauchia & Javier Sanz, 2017. "The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs," Energies, MDPI, vol. 10(3), pages 1-13, February.
    16. Irawan, Chandra Ade & Jones, Dylan & Hofman, Peter S. & Zhang, Lina, 2023. "Integrated strategic energy mix and energy generation planning with multiple sustainability criteria and hierarchical stakeholders," European Journal of Operational Research, Elsevier, vol. 308(2), pages 864-883.
    17. Matteo Acquarone & Claudio Maino & Daniela Misul & Ezio Spessa & Antonio Mastropietro & Luca Sorrentino & Enrico Busto, 2023. "Influence of the Reward Function on the Selection of Reinforcement Learning Agents for Hybrid Electric Vehicles Real-Time Control," Energies, MDPI, vol. 16(6), pages 1-22, March.
    18. Song, Jingeun & Cha, Junepyo & Choi, Mingi, 2024. "A study on 5-cycle fuel economy prediction model of electric vehicles using numerical simulation," Energy, Elsevier, vol. 309(C).
    19. David Bergman & Carlos Cardonha & Jason Imbrogno & Leonardo Lozano, 2023. "Optimizing the Expected Maximum of Two Linear Functions Defined on a Multivariate Gaussian Distribution," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 304-317, March.
    20. Yang, Ningkang & Han, Lijin & Xiang, Changle & Liu, Hui & Li, Xunmin, 2021. "An indirect reinforcement learning based real-time energy management strategy via high-order Markov Chain model for a hybrid electric vehicle," Energy, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148125000254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.