IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics096014812402305x.html
   My bibliography  Save this article

3-E analysis of a hybrid multigeneration carbon-free process based on the integration of Allam-Z cycle and CO2 electroreduction cell

Author

Listed:
  • Zhang, Dalin
  • Farajollahi, Amirhamzeh
  • Basem, Ali
  • Shami, H.
  • Muzammil, Khursheed
  • Islam, Saiful
  • Zainul, Rahadian

Abstract

A modified version of the Allam cycle, known as the Allam-Z cycle, was proposed and studied. This modified cycle features a simplified system that utilizes a working medium composed of natural gas/Oxygen combustion products mixed with circulating CO2 for power generation. The aim is to achieve high efficiency, zero CO2 emissions, and facilitate peak load shifting. Notable modifications include pumping all working media to high pressure using pumps instead of compressors, utilizing the cold energy from both liquid oxygen and LNG to cool water for CO2 liquefaction, and incorporating a set of regenerative heat exchangers for turbine exhaust heat recovery. Furthermore, a fraction of the outlet CO2 is directed to a CO2 electroreduction cell for conversion into methane. A portion of the produced methane is then reintroduced into the supercritical CO2 cycle, while the remaining methane is stored. Subsequently, a comprehensive 3-E analysis was conducted to investigate the modeled process. Based on the results, the energy efficiency, exergy efficiency, and total cost rate of the simulated process are 41.22 %, 57 %, and 326.86 $/h, respectively.

Suggested Citation

  • Zhang, Dalin & Farajollahi, Amirhamzeh & Basem, Ali & Shami, H. & Muzammil, Khursheed & Islam, Saiful & Zainul, Rahadian, 2025. "3-E analysis of a hybrid multigeneration carbon-free process based on the integration of Allam-Z cycle and CO2 electroreduction cell," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s096014812402305x
    DOI: 10.1016/j.renene.2024.122237
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812402305X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122237?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Byun, Manhee & Lim, Dongjun & Lee, Boreum & Kim, Ayeon & Lee, In-Beum & Brigljević, Boris & Lim, Hankwon, 2022. "Economically feasible decarbonization of the Haber-Bosch process through supercritical CO2 Allam cycle integration," Applied Energy, Elsevier, vol. 307(C).
    2. Bahnamiri, Fazele Karimian & Khalili, Masoud & Pakzad, Pouria & Mehrpooya, Mehdi, 2022. "Techno-economic assessment of a novel power-to-liquid system for synthesis of formic acid and ammonia, based on CO2 electroreduction and alkaline water electrolysis cells," Renewable Energy, Elsevier, vol. 187(C), pages 1224-1240.
    3. Shokri Kalan, Ali & Heidarabadi, Shadab & Khaleghi, Mohammad & Ghiasirad, Hamed & Skorek-Osikowska, Anna, 2023. "Biomass-to-energy integrated trigeneration system using supercritical CO2 and modified Kalina cycles: Energy and exergy analysis," Energy, Elsevier, vol. 270(C).
    4. Akrami, Ehsan & Chitsaz, Ata & Nami, Hossein & Mahmoudi, S.M.S., 2017. "Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy," Energy, Elsevier, vol. 124(C), pages 625-639.
    5. Feng, Ye & Chen, Jinglong & Luo, Ji, 2024. "Life cycle cost analysis of power generation from underground coal gasification with carbon capture and storage (CCS) to measure the economic feasibility," Resources Policy, Elsevier, vol. 92(C).
    6. Wolf, Daniel & Budt, Marcus, 2014. "LTA-CAES – A low-temperature approach to Adiabatic Compressed Air Energy Storage," Applied Energy, Elsevier, vol. 125(C), pages 158-164.
    7. Xin, Tuantuan & Xu, Cheng & Yang, Yongping & Kindra, Vladimir & Rogalev, Andrey, 2023. "A new process splitting analytical method for the coal-based Allam cycle: Thermodynamic assessment and process integration," Energy, Elsevier, vol. 267(C).
    8. Khalilian, Morteza & Pourmokhtar, Hamed & Roshan, Ashkan, 2018. "Effect of heat extraction mode on the overall energy and exergy efficiencies of the solar ponds: A transient study," Energy, Elsevier, vol. 154(C), pages 27-37.
    9. Sevinchan, Eren & Dincer, Ibrahim & Lang, Haoxiang, 2019. "Energy and exergy analyses of a biogas driven multigenerational system," Energy, Elsevier, vol. 166(C), pages 715-723.
    10. Amirhamzeh Farajollahi & Seyed Amirhossein Hejazirad & Mohsen Rostami, 2022. "Thermodynamic modeling of a power and hydrogen generation system driven by municipal solid waste gasification," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5887-5916, April.
    11. Zhu, Zilong & Chen, Yaping & Wu, Jiafeng & Zhang, Shaobo & Zheng, Shuxing, 2019. "A modified Allam cycle without compressors realizing efficient power generation with peak load shifting and CO2 capture," Energy, Elsevier, vol. 174(C), pages 478-487.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Rashed, Abdullah A.A.A. & Afrand, Masoud, 2021. "Multi-criteria exergoeconomic optimization for a combined gas turbine-supercritical CO2 plant with compressor intake cooling fueled by biogas from anaerobic digestion," Energy, Elsevier, vol. 223(C).
    2. Sleiti, Ahmad K. & Al-Ammari, Wahib A. & Musharavati, Farayi, 2024. "Novel integrated system for power, hydrogen, and ammonia production using direct oxy-combustion sCO2 power cycle with automatic CO2 capture, water electrolyzer, and Haber-Bosch process," Energy, Elsevier, vol. 307(C).
    3. Ghiasirad, Hamed & Gholizadeh, Towhid & Ochmann, Jakub & Jurczyk, Michal & Bartela, Lukasz & Skorek-Osikowska, Anna, 2024. "Synergizing compressed air energy storage and liquefied natural gas regasification in a power-to-biofuels plant," Energy, Elsevier, vol. 308(C).
    4. Fabrizio Reale, 2023. "The Allam Cycle: A Review of Numerical Modeling Approaches," Energies, MDPI, vol. 16(22), pages 1-22, November.
    5. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
    6. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    7. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    8. Mohammadpour, Mohammadreza & Houshfar, Ehsan & Ashjaee, Mehdi & Mohammadpour, Amirreza, 2021. "Energy and exergy analysis of biogas fired regenerative gas turbine cycle with CO2 recirculation for oxy-fuel combustion power generation," Energy, Elsevier, vol. 220(C).
    9. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    10. Alipour, Mehran & Deymi-Dashtebayaz, Mahdi & Asadi, Mostafa, 2023. "Investigation of energy, exergy, and economy of co-generation system of solar electricity and cooling using linear parabolic collector for a data center," Energy, Elsevier, vol. 279(C).
    11. Daniele Candelaresi & Giuseppe Spazzafumo, 2023. "Production of Substitute Natural Gas Integrated with Allam Cycle for Power Generation," Energies, MDPI, vol. 16(5), pages 1-17, February.
    12. Jannelli, E. & Minutillo, M. & Lubrano Lavadera, A. & Falcucci, G., 2014. "A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology," Energy, Elsevier, vol. 78(C), pages 313-322.
    13. Huang, Shucheng & Khajepour, Amir, 2022. "A new adiabatic compressed air energy storage system based on a novel compression strategy," Energy, Elsevier, vol. 242(C).
    14. Zhang, Yufei & Zhang, Wenlong & Li, Ruixiong & Wang, Huanran & He, Xin & Li, Xiangdong & Du, Junyu & Zhang, Xuanhao, 2024. "Thermodynamic and economic analysis of a novel compressed air energy storage system coupled with solar energy and liquid piston energy storage and release," Energy, Elsevier, vol. 311(C).
    15. Amin Mohammadi & Akbar Maleki, 2024. "Performance Improvement of the LNG Regasification Process Based on Geothermal Energy Using a Thermoelectric Generator and Energy and Exergy Analyses," Sustainability, MDPI, vol. 16(24), pages 1-22, December.
    16. Ganguly, Sayantan & Date, Abhijit & Akbarzadeh, Aliakbar, 2019. "On increasing the thermal mass of a salinity gradient solar pond with external heat addition: A transient study," Energy, Elsevier, vol. 168(C), pages 43-56.
    17. Zhao, Lu & Hai, Qing & Mei, Junlun, 2024. "An integrated approach to green power, cooling, and freshwater production from geothermal and solar energy sources; case study of Jiangsu, China," Energy, Elsevier, vol. 305(C).
    18. Mohamad Taghvaee, Vahid & Saboori, Behnaz & Soretz, Susanne & Magazzino, Cosimo & Tatar, Moosa, 2024. "Renewable energy, energy efficiency, and economic complexity in the middle East and North Africa: A panel data analysis," Energy, Elsevier, vol. 311(C).
    19. Facci, Andrea L. & Sánchez, David & Jannelli, Elio & Ubertini, Stefano, 2015. "Trigenerative micro compressed air energy storage: Concept and thermodynamic assessment," Applied Energy, Elsevier, vol. 158(C), pages 243-254.
    20. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s096014812402305x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.