IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics0960148124022766.html
   My bibliography  Save this article

Impact of heat loss from storage tank with phase change material on the performance of a solar-assisted heat pump system

Author

Listed:
  • Li, Yantong
  • Nord, Natasa
  • Yin, Huibin
  • Pan, Gechuanqi

Abstract

Solar-assisted heat pump systems can address the drawbacks of traditional heat pumps, which have high operating costs, and solar collectors, which cannot provide continuous heat throughout the day. A storage tank is a common device in solar-assisted heat pumps. However, the impact of heat loss from a storage tank with phase change material on the performance of solar-assisted heat pump system is still unknown. Therefore, this study investigated the impact of heat loss from a storage tank with phase change material on the energy, economic, environmental, and technical performance of a solar-assisted heat pump system. A case study for swimming pool application was conducted. The simulation platform was built using TRNSYS and MATLAB. Performance comparison between systems with and without heat loss from a storage tank with phase change material was conducted. Results indicated that when the heat loss coefficient varied from 2 W/(m2·K) to 12 W/(m2·K), total electricity use, operating cost, thermal uncomfortable ratio, and CO2 emission increased by up to 22.3 %, 16.8 %, 242.9 %, and 22.3 %, respectively. This study helped scholars understand the importance of considering heat loss from storage tanks with phase change material in assessing the performance of solar-assisted heat pump systems.

Suggested Citation

  • Li, Yantong & Nord, Natasa & Yin, Huibin & Pan, Gechuanqi, 2025. "Impact of heat loss from storage tank with phase change material on the performance of a solar-assisted heat pump system," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124022766
    DOI: 10.1016/j.renene.2024.122208
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Sangwook & Chung, Yoong & Kim, Sunjin & Jeong, Yeonwoo & Kim, Min Soo, 2023. "Predictive optimization method for the waste heat recovery strategy in an electric vehicle heat pump system," Applied Energy, Elsevier, vol. 333(C).
    2. Abdullah Ahmed Bawazir & Daniel Friedrich, 2022. "Evaluation and Design of Large-Scale Solar Adsorption Cooling Systems Based on Energetic, Economic and Environmental Performance," Energies, MDPI, vol. 15(6), pages 1-24, March.
    3. Gu, Xinzhuang & Dai, Jianguo & Li, Haifeng & Dai, Yanjun, 2022. "Experimental and theoretical assessment of a solar assisted heat pump system for in-bin grain drying: A comprehensive case study," Renewable Energy, Elsevier, vol. 181(C), pages 426-444.
    4. You, Tian & Wang, Fang, 2023. "Green ground source heat pump using various low-global-warming-potential refrigerants: Thermal imbalance and long-term performance," Renewable Energy, Elsevier, vol. 210(C), pages 159-173.
    5. Liang, Haobin & Liu, Liu & Zhong, Ziwen & Gan, Yixiang & Wu, Jian-Yong & Niu, Jianlei, 2022. "Towards idealized thermal stratification in a novel phase change emulsion storage tank," Applied Energy, Elsevier, vol. 310(C).
    6. Meng, Z.N. & Zhang, P., 2017. "Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM," Applied Energy, Elsevier, vol. 190(C), pages 524-539.
    7. Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2021. "An air-source hybrid absorption-compression heat pump with large temperature lift," Applied Energy, Elsevier, vol. 291(C).
    8. Arabgolarcheh, Alireza & Micallef, Daniel & Rezaeiha, Abdolrahim & Benini, Ernesto, 2023. "Modelling of two tandem floating offshore wind turbines using an actuator line model," Renewable Energy, Elsevier, vol. 216(C).
    9. Yu, Xiaohui & Guo, Zhonglian & Gao, Zhi & Yang, Bin & Ma, Xiuqin & Dong, Shengming, 2023. "Thermodynamic investigation of a direct-expansion solar assisted heat pump with evacuated tube collector-evaporator," Renewable Energy, Elsevier, vol. 206(C), pages 418-427.
    10. de Fockert, Anton & Bijlsma, Arnout C. & O'Mahoney, Tom S.D. & Verbruggen, Wilbert & Scheijgrond, Peter C. & Wang, Zheng B., 2023. "Assessment of the impact of tidal power extraction from the Eastern Scheldt storm surge barrier through the evaluation of a pilot plant," Renewable Energy, Elsevier, vol. 213(C), pages 109-120.
    11. Hao, Xinyue & Zhou, Yifan & Wang, Qin & Gao, Neng & Wang, Xuehui & Chen, Guangming, 2023. "Prospective study of a novel heat pump system with solar energy spectral beam splitting," Renewable Energy, Elsevier, vol. 217(C).
    12. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Liu, Zichu, 2022. "Performance and optimization of a novel solar-air source heat pump building energy supply system with energy storage," Applied Energy, Elsevier, vol. 324(C).
    13. Chow, T.T. & Bai, Y. & Fong, K.F. & Lin, Z., 2012. "Analysis of a solar assisted heat pump system for indoor swimming pool water and space heating," Applied Energy, Elsevier, vol. 100(C), pages 309-317.
    14. Li, Yuanji & Niu, Zhaoyang & Gao, Xinyu & Ji, Ruiyang & Yang, Xiaohu & Yan, Jinyue, 2023. "Experimental and numerical investigations on tilt filling design of metal foam in a heat storage tank," Renewable Energy, Elsevier, vol. 217(C).
    15. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    16. Naqvi, Syed Asif Ali & Hussain, Mehvish & Hussain, Bilal & Shah, Syed Ale Raza & Nazir, Jawad & Usman, Muhammad, 2023. "Environmental sustainability and biomass energy consumption through the lens of pollution Haven hypothesis and renewable energy-environmental kuznets curve," Renewable Energy, Elsevier, vol. 212(C), pages 621-631.
    17. Zhang, T. & Zhang, Y.F. & Shi, Z.R. & Li, Q.F. & Cai, J.Y., 2023. "Experimental study of a photovoltaic solar-assisted heat pump/gravity-assisted heat pipe hybrid system," Renewable Energy, Elsevier, vol. 207(C), pages 147-161.
    18. Casares de la Torre, F.J. & Varo, Marta & López-Luque, R. & Ramírez-Faz, J. & Fernández-Ahumada, L.M., 2022. "Design and analysis of a tracking / backtracking strategy for PV plants with horizontal trackers after their conversion to agrivoltaic plants," Renewable Energy, Elsevier, vol. 187(C), pages 537-550.
    19. Li, Yantong & Huang, Gongsheng & Xu, Tao & Liu, Xiaoping & Wu, Huijun, 2018. "Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool," Applied Energy, Elsevier, vol. 209(C), pages 224-235.
    20. Li, Yantong & Nord, Natasa & Yin, Huibin, 2023. "An investigation of using CO2 heat pumps to charge PCM storage tank for domestic use," Renewable Energy, Elsevier, vol. 218(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, J.L. & Yan, Ting & Tang, Xin & Pan, W.G., 2025. "Design and operation of hybrid ground source heat pump systems: A review," Energy, Elsevier, vol. 316(C).
    2. Pouranian, Fatemeh & Akbari, Habibollah & Hosseinalipour, S.M., 2021. "Performance assessment of solar chimney coupled with earth-to-air heat exchanger: A passive alternative for an indoor swimming pool ventilation in hot-arid climate," Applied Energy, Elsevier, vol. 299(C).
    3. Li, Yantong & Liang, Junhan & Chen, Weihao & Wu, Zebo & Yin, Huibin, 2025. "Optimal design of a solar-assisted heat pump system with PCM tank for swimming pool utilization," Renewable Energy, Elsevier, vol. 240(C).
    4. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    5. Cristian Antonio Pedraza-Yepes & Kevin Enrique Berdugo-Rolong & Daniel Eduardo Ruiz-Muñoz & Oscar Fabián Higuera-Cobos & José Daniel Hernández-Vásquez, 2023. "Feasibility Study for the Implementation of Photovoltaic Panels in Public Transportation in Barranquilla," Energies, MDPI, vol. 16(20), pages 1-28, October.
    6. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng & Li, Yunhai, 2023. "Mathematical and experimental investigation about the dual-source heat pump integrating low concentrated photovoltaic and finned-tube exchanger," Energy, Elsevier, vol. 263(PE).
    7. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
    8. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    9. Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Silva, C.A., 2023. "Experimental and numerical investigation of the influence of terrain slope on the performance of single-axis trackers," Applied Energy, Elsevier, vol. 348(C).
    11. Shu, Ying & Hossain, Mohammad Razib & Tillaguango, Brayan & Alvarado, Rafael & Işık, Cem & Murshed, Muntasir & Chen, Zhiguang, 2024. "Geo-political risks, uncertainty, financial development, renewable energy, and carbon intensity: Empirical evidence from countries at high geo-political risks," Applied Energy, Elsevier, vol. 376(PB).
    12. Abbasi, Bardia & Li, Simon & Mwesigye, Aggrey, 2024. "Energy, exergy, economic, and environmental (4E) analysis of SAHP water heaters in very cold climatic conditions," Renewable Energy, Elsevier, vol. 226(C).
    13. Kim, Sumin & Kim, Sojung, 2023. "Optimization of the design of an agrophotovoltaic system in future climate conditions in South Korea," Renewable Energy, Elsevier, vol. 206(C), pages 928-938.
    14. Hongyu Zhang & Fei Gan & Guangqin Huang & Chunlong Zhuang & Xiaodong Shen & Shengbo Li & Lei Cheng & Shanshan Hou & Ningge Xu & Zhenqun Sang, 2022. "Study on Heat Storage Performance of Phase Change Reservoir in Underground Protection Engineering," Energies, MDPI, vol. 15(15), pages 1-31, August.
    15. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control for Demand- and Market-Responsive building energy management by leveraging active latent heat storage," Applied Energy, Elsevier, vol. 327(C).
    16. Wang, Ruzhu & Yan, Hongzhi & Wu, Di & Jiang, Jiatong & Dong, Yixiu, 2024. "High temperature heat pumps for industrial heating processes using water as refrigerant," Energy, Elsevier, vol. 313(C).
    17. Grzegorz Czerwiński & Jerzy Wołoszyn, 2022. "Influence of the Longitudinal and Tree-Shaped Fin Parameters on the Shell-and-Tube LHTES Energy Efficiency," Energies, MDPI, vol. 16(1), pages 1-24, December.
    18. Dacheng Li & Yulong Ding & Peilun Wang & Shuhao Wang & Hua Yao & Jihong Wang & Yun Huang, 2019. "Integrating Two-Stage Phase Change Material Thermal Storage for Cascaded Waste Heat Recovery of Diesel-Engine-Powered Distributed Generation Systems: A Case Study," Energies, MDPI, vol. 12(11), pages 1-20, June.
    19. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Bai, Ze & Shi, Junzhang, 2024. "Energy and exergy analysis of a novel dual-source heat pump system with integrated phase change energy storage," Renewable Energy, Elsevier, vol. 222(C).
    20. Barbón, A. & Aparicio-Bermejo, J. & Bayón, L. & Fortuny Ayuso, P., 2025. "The optimal design for photovoltaic power plants on sites with a general slope," Applied Energy, Elsevier, vol. 387(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124022766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.