Lattice strain engineering of Ni-doped Pd nanoparticles: Realizing efficient and CO-resistant alkaline hydrogen oxidation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2024.122242
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Yu Duan & Zi-You Yu & Li Yang & Li-Rong Zheng & Chu-Tian Zhang & Xiao-Tu Yang & Fei-Yue Gao & Xiao-Long Zhang & Xingxing Yu & Ren Liu & Hong-He Ding & Chao Gu & Xu-Sheng Zheng & Lei Shi & Jun Jiang & , 2020. "Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
- Samanta, Rajib & Mishra, Ranjit & Manna, Biplab Kumar & Barman, Sudip, 2022. "IrO2 modified Crystalline-PdO nanowires based bi-functional electro-catalyst for HOR/HER in acid and base," Renewable Energy, Elsevier, vol. 191(C), pages 151-160.
- Zhang, Qian & Guo, Weijia & Yang, Yushan & Shen, Shunyu & Chen, Xin & Shao, Kai & Wang, Zhenjie & Sun, Qingfeng & Li, Caicai, 2024. "Ru decorated natural cellulose nanofiber-derived carbon aerogel for efficient hydrogen evolution in alkaline seawater," Renewable Energy, Elsevier, vol. 227(C).
- Wang, Junkai & Yang, Jiaming & Fu, Lei & Zong, Zheng & Zhou, Jun & Wu, Kai, 2022. "In-situ growth of Ru/RuO2 nanoparticles decorated (La0.6Sr1.4)0.95Mn0.9Ru0.1O4 as a potential electrode for symmetrical solid oxide fuel cells," Renewable Energy, Elsevier, vol. 189(C), pages 1419-1427.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiaoning Wang & Lianming Zhao & Xuejin Li & Yong Liu & Yesheng Wang & Qiaofeng Yao & Jianping Xie & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2022. "Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Wensheng Jiao & Zhanghao Ren & Zhibo Cui & Chao Ma & Ziang Shang & Guanzhen Chen & Ruihu Lu & Tao Gan & Ziyun Wang & Yu Xiong & Yunhu Han, 2025. "All-round enhancement induced by oxophilic single Ru and W atoms for alkaline hydrogen oxidation of tiny Pt nanoparticles," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
- Shujie Liu & Zhiguo Zhang & Kamran Dastafkan & Yan Shen & Chuan Zhao & Mingkui Wang, 2025. "Yttrium-doped NiMo-MoO2 heterostructure electrocatalysts for hydrogen production from alkaline seawater," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
- Xingdong Wang & Xuerui Liu & Jinjie Fang & Houpeng Wang & Xianwei Liu & Haiyong Wang & Chengjin Chen & Yongsheng Wang & Xuejiang Zhang & Wei Zhu & Zhongbin Zhuang, 2024. "Tuning the apparent hydrogen binding energy to achieve high-performance Ni-based hydrogen oxidation reaction catalyst," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Hongming Sun & Zhenhua Yan & Caiying Tian & Cha Li & Xin Feng & Rong Huang & Yinghui Lan & Jing Chen & Cheng-Peng Li & Zhihong Zhang & Miao Du, 2022. "Bixbyite-type Ln2O3 as promoters of metallic Ni for alkaline electrocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Zheyuan Ding & Sai Chen & Tingting Yang & Zunrong Sheng & Xianhua Zhang & Chunlei Pei & Donglong Fu & Zhi-Jian Zhao & Jinlong Gong, 2024. "Atomically dispersed MoNi alloy catalyst for partial oxidation of methane," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Zhongliang Huang & Shengnan Hu & Mingzi Sun & Yong Xu & Shangheng Liu & Renjie Ren & Lin Zhuang & Ting-Shan Chan & Zhiwei Hu & Tianyi Ding & Jing Zhou & Liangbin Liu & Mingmin Wang & Yu-Cheng Huang & , 2024. "Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Xiaoyu Tian & Renjie Ren & Fengyuan Wei & Jiajing Pei & Zhongbin Zhuang & Lin Zhuang & Wenchao Sheng, 2024. "Metal-support interaction boosts the stability of Ni-based electrocatalysts for alkaline hydrogen oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Changhong Zhan & Yong Xu & Lingzheng Bu & Huaze Zhu & Yonggang Feng & Tang Yang & Ying Zhang & Zhiqing Yang & Bolong Huang & Qi Shao & Xiaoqing Huang, 2021. "Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
- Libo Wu & Wanheng Lu & Wei Li Ong & Andrew See Weng Wong & Yuanming Zhang & Tianxi Zhang & Kaiyang Zeng & Zhifeng Ren & Ghim Wei Ho, 2025. "Photothermal-promoted anion exchange membrane seawater electrolysis on a nickel-molybdenum-based catalyst," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
- Yanyan Fang & Cong Wei & Zenan Bian & Xuanwei Yin & Bo Liu & Zhaohui Liu & Peng Chi & Junxin Xiao & Wanjie Song & Shuwen Niu & Chongyang Tang & Jun Liu & Xiaolin Ge & Tongwen Xu & Gongming Wang, 2024. "Unveiling the nature of Pt-induced anti-deactivation of Ru for alkaline hydrogen oxidation reaction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Xiaoning Wang & Yanfu Tong & Wenting Feng & Pengyun Liu & Xuejin Li & Yongpeng Cui & Tonghui Cai & Lianming Zhao & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2023. "Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Bingxing Zhang & Baohua Zhang & Guoqiang Zhao & Jianmei Wang & Danqing Liu & Yaping Chen & Lixue Xia & Mingxia Gao & Yongfeng Liu & Wenping Sun & Hongge Pan, 2022. "Atomically dispersed chromium coordinated with hydroxyl clusters enabling efficient hydrogen oxidation on ruthenium," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Geng Wu & Xiao Han & Jinyan Cai & Peiqun Yin & Peixin Cui & Xusheng Zheng & Hai Li & Cai Chen & Gongming Wang & Xun Hong, 2022. "In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Ahmed, Saad & Beauger, Christian & Zada, Amir & Iqbal, Waseem & Ahmed, Naveed & Anwar, Muhammad Tuoqeer & Hassan, Muhammad, 2025. "Recent advancements in designing high-performance proton exchange membrane fuel cells: A comprehensive review," Applied Energy, Elsevier, vol. 390(C).
- Shiqi Zhou & Wei Cao & Lu Shang & Yunxuan Zhao & Xuyang Xiong & Jianke Sun & Tierui Zhang & Jiayin Yuan, 2025. "Facilitating alkaline hydrogen evolution kinetics via interfacial modulation of hydrogen-bond networks by porous amine cages," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124023103. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.