IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124005330.html
   My bibliography  Save this article

Ru decorated natural cellulose nanofiber-derived carbon aerogel for efficient hydrogen evolution in alkaline seawater

Author

Listed:
  • Zhang, Qian
  • Guo, Weijia
  • Yang, Yushan
  • Shen, Shunyu
  • Chen, Xin
  • Shao, Kai
  • Wang, Zhenjie
  • Sun, Qingfeng
  • Li, Caicai

Abstract

Highly active, stable and affordable hydrogen evolution reaction (HER) electrocatalysts are intensively needed for global energy conversion systems. Carbon-supported ruthenium (Ru)-based electrocatalysts have been rising stars in recent years and the pursuit of higher activity has arisen intensive research interest. Herein, a novel electrocatalyst with cellulose nanofibers containing abundant carboxyls and hydroxyls as the carbon source to anchor Ru nanoparticles (Ru/NC) was designed and synthesized. Benefiting from the anchoring and dispersion of the carbon substrate to the Ru nanoparticles and the synergistic interaction between the different components, the obtained Ru/NC exhibited optimal HER activity in all the corresponding contrast electrocatalysts, with low overpotentials of 16 mV, 22 mV, and 46 mV to attain 10 mA cm−-2 in 1.0 M KOH, 0.5 M H2SO4 and 1.0 M KOH + seawater, respectively. Further, the Tafel slope of Ru/NC in alkaline seawater indicated that its HER process followed a Volmer-Tafel mechanism. Additionally, the synthesized Ru/NC also displayed excellent stability in different electrolytes. This work will provide a novel and interesting insight into the fabrication of advanced carbon-supported electrocatalysts with resource-rich biomass as cost-effective carbon source.

Suggested Citation

  • Zhang, Qian & Guo, Weijia & Yang, Yushan & Shen, Shunyu & Chen, Xin & Shao, Kai & Wang, Zhenjie & Sun, Qingfeng & Li, Caicai, 2024. "Ru decorated natural cellulose nanofiber-derived carbon aerogel for efficient hydrogen evolution in alkaline seawater," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005330
    DOI: 10.1016/j.renene.2024.120468
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124005330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.