IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics0960148124022833.html
   My bibliography  Save this article

Study on the kinetic characteristics of stepwise reduction and steam oxidation for the packed-bed chemical looping hydrogen production

Author

Listed:
  • Wang, Zhentong
  • Zhang, Zhe
  • Li, Huan
  • Liu, Jianguo

Abstract

Biomass-derived gas chemical looping hydrogen production (CLHP) highlights its potential to produce high-purity hydrogen with recycling waste bioenergy. Investigations on the kinetics characteristics of stepwise reduction and steam/air oxidation are conducted on a thermogravimetric analyzer (TGA) with a bubbler. The research decouples Fe2O3-Fe3O4, Fe3O4-FeO, and FeO-Fe reduction stages by adjusting the partial pressures of CO/CO2. Kinetic equations of stepwise reduction correlating to the reaction temperature and gas concentration are established, with activation energies for the three stages of 9.99 kJ/mol, 82.10 kJ/mol, and 149.32 kJ/mol, respectively. Evolutionary calculations of kinetic models confirms that the Fe2O3 reduction follows a topological chemical reaction pathway. The gas-solid dynamic response characteristics during the reduction process can be qualitatively and quantitatively analyzed, showing regions of Fe, FeO-Fe mixed zone, FeO, Fe3O4-FeO mixed zone, Fe3O4, Fe2O3-Fe3O4 mixed zone, and Fe2O3 distributed alternately along the bed axis. Increasing the oxidation temperature significantly enhance the reaction kinetics of hydrogen production more than reducing the reduction temperature during the steam oxidation process. Above 800 °C, the reaction kinetics of the air combustion stage (Fe3O4-Fe2O3) is not affected by raising temperatures. Overall, this study linked the kinetic mechanism and gas-solid reaction characteristics of reactor beds.

Suggested Citation

  • Wang, Zhentong & Zhang, Zhe & Li, Huan & Liu, Jianguo, 2025. "Study on the kinetic characteristics of stepwise reduction and steam oxidation for the packed-bed chemical looping hydrogen production," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022833
    DOI: 10.1016/j.renene.2024.122215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022833
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turap, Yusan & Wang, Zhentong & Wang, Yidi & Zhang, Zhe & Chen, Siyuan & Wang, Wei, 2023. "High purity hydrogen production via coupling CO2 reforming of biomass-derived gas and chemical looping water splitting," Applied Energy, Elsevier, vol. 331(C).
    2. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2021. "Estimating long-term global supply costs for low-carbon hydrogen," Applied Energy, Elsevier, vol. 302(C).
    3. Gregor Brändle & Max Schönfisch & Simon Schulte, 2020. "Estimating Long-Term Global Supply Costs for Low-Carbon Hydrogen," EWI Working Papers 2020-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    4. Chen, Yu-Yen & Nadgouda, Sourabh & Shah, Vedant & Fan, Liang-Shih & Tong, Andrew, 2020. "Oxidation kinetic modelling of Fe-based oxygen carriers for chemical looping applications: Impact of the topochemical effect," Applied Energy, Elsevier, vol. 279(C).
    5. Hua, Xiuning & Fan, Yiran & Wang, Yidi & Fu, Tiantian & Fowler, G.D. & Zhao, Dongmei & Wang, Wei, 2017. "The behaviour of multiple reaction fronts during iron (III) oxide reduction in a non-steady state packed bed for chemical looping water splitting," Applied Energy, Elsevier, vol. 193(C), pages 96-111.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Neumann & Johannes Hampp & Tom Brown, 2025. "Green energy and steel imports reduce Europe’s net-zero infrastructure needs," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    2. De-León Almaraz, Sofía & Rácz, Viktor & Azzaro-Pantel, Catherine & Szántó, Zoltán Oszkár, 2022. "Multiobjective and social cost-benefit optimisation for a sustainable hydrogen supply chain: Application to Hungary," Applied Energy, Elsevier, vol. 325(C).
    3. Li, Zezheng & Yu, Pengwei & Xian, Yujiao & Fan, Jing-Li, 2024. "Investment benefit analysis of coal-to-hydrogen coupled CCS technology in China based on real option approach," Energy, Elsevier, vol. 294(C).
    4. Ephraim Bonah Agyekum & Jeffrey Dankwa Ampah & Solomon Eghosa Uhunamure & Karabo Shale & Ifeoma Prisca Onyenegecha & Vladimir Ivanovich Velkin, 2023. "Can Africa Serve Europe with Hydrogen Energy from Its Renewables?—Assessing the Economics of Shipping Hydrogen and Hydrogen Carriers to Europe from Different Parts of the Continent," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    5. Bae, Dasol & Kim, Yikyeom & Ko, Eun Hee & Ju Han, Seung & Lee, Jae W. & Kim, Minkyu & Kang, Dohyung, 2023. "Methane pyrolysis and carbon formation mechanisms in molten manganese chloride mixtures," Applied Energy, Elsevier, vol. 336(C).
    6. Cao, Qiang & Chen, Yuji & Wang, Zhiping & Wang, Miaomiao & Wang, Pengcheng & Ge, Lichun & Li, Peng & Zhao, Qinyu & Wang, Bo & Gan, Zhihua, 2025. "Improving the cooling efficiency of cryo-compressed hydrogen based on the temperature-distributed method in regenerative refrigerators," Energy, Elsevier, vol. 314(C).
    7. Schlund, David & Theile, Philipp, 2022. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," Energy Policy, Elsevier, vol. 166(C).
    8. Galimova, Tansu & Satymov, Rasul & Keiner, Dominik & Breyer, Christian, 2024. "Sustainable energy transition of Greenland and its prospects as a potential Arctic e-fuel and e-chemical export hub for Europe and East Asia," Energy, Elsevier, vol. 286(C).
    9. Kai Schulze & Mile Mišić & Nikola Radojičić & Berkin Serin, 2024. "Evaluating Partners for Renewable Energy Trading: A Multidimensional Framework and Tool," Sustainability, MDPI, vol. 16(9), pages 1-22, April.
    10. César Berna-Escriche & Carlos Vargas-Salgado & David Alfonso-Solar & Alberto Escrivá-Castells, 2022. "Hydrogen Production from Surplus Electricity Generated by an Autonomous Renewable System: Scenario 2040 on Grand Canary Island, Spain," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    11. Scharf, Hendrik & Möst, Dominik, 2024. "Gas power — How much is needed on the road to carbon neutrality?," Energy Policy, Elsevier, vol. 187(C).
    12. Ding, Hongbing & Dong, Yuanyuan & Zhang, Yu & Wen, Chuang & Yang, Yan, 2024. "Exergy performance analysis of hydrogen recirculation ejectors exhibiting phase change behaviour in PEMFC applications," Energy, Elsevier, vol. 300(C).
    13. Lifeng Du & Yanmei Yang & Luli Zhou & Min Liu, 2024. "Greenhouse Gas Reduction Potential and Economics of Green Hydrogen via Water Electrolysis: A Systematic Review of Value-Chain-Wide Decarbonization," Sustainability, MDPI, vol. 16(11), pages 1-37, May.
    14. David Franzmann & Heidi Heinrichs & Felix Lippkau & Thushara Addanki & Christoph Winkler & Patrick Buchenberg & Thomas Hamacher & Markus Blesl & Jochen Lin{ss}en & Detlef Stolten, 2023. "Green Hydrogen Cost-Potentials for Global Trade," Papers 2303.00314, arXiv.org, revised May 2023.
    15. Wang, Ke & Liu, Fangming & Liu, Junling, 2025. "Techno-economic assessment of different clean hydrogen development pathways across industries in China," Applied Energy, Elsevier, vol. 382(C).
    16. Lee, Ju-Sung & Cherif, Ali & Yoon, Ha-Jun & Seo, Seung-Kwon & Bae, Ju-Eon & Shin, Ho-Jin & Lee, Chulgu & Kwon, Hweeung & Lee, Chul-Jin, 2022. "Large-scale overseas transportation of hydrogen: Comparative techno-economic and environmental investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    17. Schlund, David & Schönfisch, Max, 2021. "Analysing the impact of a renewable hydrogen quota on the European electricity and natural gas markets," Applied Energy, Elsevier, vol. 304(C).
    18. Alrobaian, Abdulrahman A. & Alsagri, Ali Sulaiman, 2024. "Analysis of the effect of component size and demand pattern on the final price for a green hydrogen production system," Energy, Elsevier, vol. 307(C).
    19. Max Schönfisch, 2022. "Charting the Development of a Global Market for Low-Carbon Hydrogen," EWI Working Papers 2022-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    20. Adeola Akinpelu & Md Shafiul Alam & Md Shafiullah & Syed Masiur Rahman & Fahad Saleh Al-Ismail, 2023. "Greenhouse Gas Emission Dynamics of Saudi Arabia: Potential of Hydrogen Fuel for Emission Footprint Reduction," Sustainability, MDPI, vol. 15(7), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.