IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics0960148124022523.html
   My bibliography  Save this article

The performance and emissions characteristics of the gasoline spark ignition engine fuelled with green and renewable methanol and hydrogen

Author

Listed:
  • Duan, Xiongbo
  • Chu, Xianghe
  • Wang, Rumin
  • Chen, Zhanming
  • Zhou, Feng
  • Abdellatief, Tamer M.M.

Abstract

In order to achieve carbon neutrality in transportation sector, this study examines the performance of three different fuels in a spark ignition (SI) engine from green and renewable methanol and hydrogen: M0G100 (pure gasoline), M10G90 (90 % gasoline mixed with 10 % methanol), M30G70 (70 % gasoline mixed with 30 % methanol), and M30G70 with hydrogen (7.5 % hydrogen energy share in blended fuel). The study explores the synergistic optimization influences of adding methanol and hydrogen on performance of a gasoline SI engine thorough comparative analysis. The results show that using hydrogen and methanol can improve combustion process of the gasoline engine. The coefficient of variation (COV) of peak combustion pressure for the test gasoline engine using different fuel mixtures (M0G100, M10G90, M30G70, and M30G70/hydrogen) is 16.25 %, 17.58 %, 18.75 %, and 9.55 % respectively. Similarly, the COV of indicated mean effective pressure for these mixtures is 7.6 %, 11.41 %, 33.45 %, and 4.41 % respectively. Additionally, using M30G70 with hydrogen in gasoline engine shows a 14.3 % decrease in fuel consumption and a 12.5 % increase in indicated thermal efficiency. The carbon dioxide (CO2) emissions of the test gasoline engine with M10G90, M30G70 and M30G70/hydrogen fuels are respectively reduced by 7.37 %, 26.78 % and 33.27 % compared to the gasoline engine.

Suggested Citation

  • Duan, Xiongbo & Chu, Xianghe & Wang, Rumin & Chen, Zhanming & Zhou, Feng & Abdellatief, Tamer M.M., 2025. "The performance and emissions characteristics of the gasoline spark ignition engine fuelled with green and renewable methanol and hydrogen," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022523
    DOI: 10.1016/j.renene.2024.122184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022523
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Hao & Su, Xin & He, Jingjing & Xie, Bin, 2019. "Investigation on combustion and emission characteristics of a common rail diesel engine fueled with diesel/n-pentanol/methanol blends," Energy, Elsevier, vol. 167(C), pages 297-311.
    2. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    3. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    4. Elfasakhany, Ashraf, 2017. "Investigations on performance and pollutant emissions of spark-ignition engines fueled with n-butanol–, isobutanol–, ethanol–, methanol–, and acetone–gasoline blends: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 404-413.
    5. Xiao, Peng & Lee, Chia-fon & Wu, Han & Liu, Fushui, 2020. "Effects of hydrogen addition on the laminar methanol-air flame under different initial temperatures," Renewable Energy, Elsevier, vol. 154(C), pages 209-222.
    6. Wan, Shuai & Zhou, Feng & Fu, Jianqin & Yu, Juan & Liu, Jingping & Abdellatief, Tamer M.M. & Duan, Xiongbo, 2024. "Effects of hydrogen addition and exhaust gas recirculation on thermodynamics and emissions of ultra-high compression ratio spark ignition engine fueled with liquid methane," Energy, Elsevier, vol. 306(C).
    7. Gao, Jianbing & Tian, Guohong & Ma, Chaochen & Xing, Shikai & Jenner, Phil, 2021. "Performance explorations of a naturally aspirated opposed rotary piston engine fuelled with hydrogen under part load and stoichiometric conditions using a numerical simulation approach," Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfredas Rimkus & Edward Kozłowski & Tadas Vipartas & Saugirdas Pukalskas & Piotr Wiśniowski & Jonas Matijošius, 2025. "Emission Characteristics of Hydrogen-Enriched Gasoline Under Dynamic Driving Conditions," Energies, MDPI, vol. 18(5), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fekadu Mosisa Wako & Gianmaria Pio & Ernesto Salzano, 2020. "The Effect of Hydrogen Addition on Low-Temperature Combustion of Light Hydrocarbons and Alcohols," Energies, MDPI, vol. 13(15), pages 1-14, July.
    2. Zhou, Xiaochuan & Wu, Gang & Wang, Chunyan & Zhang, Ruijun & Shi, Shuaipeng & Zhao, Wanzhong, 2024. "Cooperative optimization of energy recovery and braking feel based on vehicle speed prediction under downshifting conditions," Energy, Elsevier, vol. 301(C).
    3. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    4. Gao, Jianbing & Tian, Guohong & Ma, Chaochen & Huang, Liyong & Xing, Shikai, 2021. "Simulation of the impacts on a direct hydrogen injection opposed rotary piston engine performance by the injection strategies and equivalence ratios," Renewable Energy, Elsevier, vol. 179(C), pages 1204-1216.
    5. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    6. Duggal, Angel Swastik & Singh, Rajesh & Gehlot, Anita & Gupta, Lovi Raj & Akram, Sheik Vaseem & Prakash, Chander & Singh, Sunpreet & Kumar, Raman, 2021. "Infrastructure, mobility and safety 4.0: Modernization in road transportation," Technology in Society, Elsevier, vol. 67(C).
    7. Yang, Shuo & Chen, Hao & Yang, Xuelin & Luo, Ding, 2025. "Design optimization of split fins in heat pipe-based thermoelectric generators," Energy, Elsevier, vol. 322(C).
    8. Tse, H. & Leung, C.W. & Cheung, C.S., 2015. "Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends," Energy, Elsevier, vol. 83(C), pages 343-350.
    9. Parker, Nathan C. & Kuby, Michael & Liu, Jingteng & Stechel, Ellen B., 2025. "Extreme heat effects on electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 380(C).
    10. Tang, Qingsong & Yang, Yang & Luo, Chang & Yang, Zhong & Fu, Chunyun, 2022. "A novel electro-hydraulic compound braking system coordinated control strategy for a four-wheel-drive pure electric vehicle driven by dual motors," Energy, Elsevier, vol. 241(C).
    11. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    12. Wu, Jiajun & Liu, Hui & Ren, Xiaolei & Nie, Shida & Qin, Yechen & Han, Lijin, 2025. "A multi-objective optimization approach for regenerative braking control in electric vehicles using MPE-SAC algorithm," Energy, Elsevier, vol. 318(C).
    13. Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
    14. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    15. Yuan, Xingzhong & Ding, Xiaowei & Leng, Lijian & Li, Hui & Shao, Jianguang & Qian, Yingying & Huang, Huajun & Chen, Xiaohong & Zeng, Guangming, 2018. "Applications of bio-oil-based emulsions in a DI diesel engine: The effects of bio-oil compositions on engine performance and emissions," Energy, Elsevier, vol. 154(C), pages 110-118.
    16. Sun, Xilei & Zhou, Feng & Fu, Jianqin & Liu, Jingping, 2024. "Experiment and simulation study on energy flow characteristics of a battery electric vehicle throughout the entire driving range in low-temperature conditions," Energy, Elsevier, vol. 292(C).
    17. Jia, Dongdong & Qiao, Junhao & Liu, Jingping & Fu, Jianqin & Wang, Rumin & Li, Yangyang & Duan, Xiongbo, 2025. "Experiment and simulation analysis of the effects of different asynchronous variable intake valve phase differences on the in-cylinder flow, combustion and performance characteristics of high compress," Energy, Elsevier, vol. 320(C).
    18. Huang, Haozhong & Huang, Rong & Guo, Xiaoyu & Pan, Mingzhang & Teng, Wenwen & Chen, Yingjie & Li, Zhongju, 2019. "Effects of pine oil additive and pilot injection strategies on energy distribution, combustion and emissions in a diesel engine at low-load condition," Applied Energy, Elsevier, vol. 250(C), pages 185-197.
    19. Hagos, Ftwi Y. & Ali, Obed M. & Mamat, Rizalman & Abdullah, Abdul A., 2017. "Effect of emulsification and blending on the oxygenation and substitution of diesel fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1281-1294.
    20. Jia, Dongdong & Qiao, Junhao & Wang, Shuqian & Guan, Jinhuan & Liu, Jingping & Fu, Jianqin & Li, Yangyang & Wang, Rumin, 2024. "Influence of variable enhanced LIVC miller cycle coupled with high compression ratio on the performance and combustion of a supercharged spark ignition engine," Energy, Elsevier, vol. 309(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.