IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v239y2025ics0960148124022535.html
   My bibliography  Save this article

Comprehensive performance analysis of a novel closed-loop hydronic cooling of photovoltaic panel with a controlled intermittent flow strategy

Author

Listed:
  • Dirawi, Hazim
  • Wang, Qiliang
  • Hu, Mingke
  • Su, Yuehong
  • Riffat, Saffa

Abstract

Photovoltaic (PV) technology has seen rapid development in hot and arid regions due to intense solar radiation. However, extreme weather conditions pose challenges for PV applications in terms of efficiency and lifespan. A new closed-loop hydronic cooling system for PV panels, designed for 24-h continuous operation, was developed to address these challenges. However, a circulation pump can consume a considerable amount of electricity due to 24-h continuous operation, resulting in substantial wastage. This study proposes a controlled intermittent flow (CIF) strategy for the pump to optimize operation hours and minimize energy consumption under favourable PV temperature conditions. A dynamic 3D simulation model was developed and validated to numerically analyse the performance metrics of the proposed PV cooling method with CIF. The yearly performance of PV panel cooling systems with continuous flow (CF) and CIF, as well as common PV panels, was comprehensively evaluated and compared. The results showed that the CIF strategy effectively reduces the pump's operating hours and energy consumption while minimally impacting the system's net electricity output. The CIF strategy is found to yield a significant enhancement in seasonal net power output, with a 0.57 % increase during winter and a 0.83 % increase in summer compared to the CF system. Moreover, employing the CIF strategy with a setpoint of 35 °C results in a consistent 0.96 % rise in annual net power output across all months compared to the CF system, except for the lifespan, the CF is better. For Basra's local climatic condition in Iraq, the CF and CIF closed-loop photovoltaic cooling systems show significant lifetime improvements of up to 34.3 % and 41 % over common PV panels, while for Hong Kong's local climatic condition, the CIF system outperforms by 4.9 % and 22.2 % compared to CF system and common PV panel, respectively. The proposed closed-loop hydronic cooling method for PV panels with CIF exhibits the best performance among the three types of PV systems, making it particularly suitable for regions with hot and arid climates.

Suggested Citation

  • Dirawi, Hazim & Wang, Qiliang & Hu, Mingke & Su, Yuehong & Riffat, Saffa, 2025. "Comprehensive performance analysis of a novel closed-loop hydronic cooling of photovoltaic panel with a controlled intermittent flow strategy," Renewable Energy, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124022535
    DOI: 10.1016/j.renene.2024.122185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Chao & Ji, Jie & Sun, Wei & Ma, Jinwei & He, Wei & Wang, Yanqiu, 2015. "Numerical simulation and experimental validation of tri-functional photovoltaic/thermal solar collector," Energy, Elsevier, vol. 87(C), pages 470-480.
    2. Dirawi, Hazim & Wang, Qiliang & Hu, Mingke & Su, Yuehong & Riffat, Saffa, 2024. "A hydronic closed-loop photovoltaic cooling system designed for hot and arid regions: Performance evaluation and degradation rate/lifetime analysis," Applied Energy, Elsevier, vol. 373(C).
    3. Rejeb, Oussama & Dhaou, Houcine & Jemni, Abdelmajid, 2015. "A numerical investigation of a photovoltaic thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 77(C), pages 43-50.
    4. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    5. Bahaidarah, Haitham M.S. & Baloch, Ahmer A.B. & Gandhidasan, Palanichamy, 2016. "Uniform cooling of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1520-1544.
    6. Zhou, Jinzhi & Ma, Xiaoli & Zhao, Xudong & Yuan, Yanping & Yu, Min & Li, Jing, 2020. "Numerical simulation and experimental validation of a micro-channel PV/T modules based direct-expansion solar heat pump system," Renewable Energy, Elsevier, vol. 145(C), pages 1992-2004.
    7. Rezvanpour, Mohammad & Borooghani, Danial & Torabi, Farschad & Pazoki, Maryam, 2020. "Using CaCl2·6H2O as a phase change material for thermo-regulation and enhancing photovoltaic panels’ conversion efficiency: Experimental study and TRNSYS validation," Renewable Energy, Elsevier, vol. 146(C), pages 1907-1921.
    8. Jha, Aprajeeta & Tripathy, P.P., 2019. "Heat transfer modeling and performance evaluation of photovoltaic system in different seasonal and climatic conditions," Renewable Energy, Elsevier, vol. 135(C), pages 856-865.
    9. Hadipour, Amirhosein & Rajabi Zargarabadi, Mehran & Rashidi, Saman, 2021. "An efficient pulsed- spray water cooling system for photovoltaic panels: Experimental study and cost analysis," Renewable Energy, Elsevier, vol. 164(C), pages 867-875.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dirawi, Hazim & Wang, Qiliang & Hu, Mingke & Su, Yuehong & Riffat, Saffa, 2024. "A hydronic closed-loop photovoltaic cooling system designed for hot and arid regions: Performance evaluation and degradation rate/lifetime analysis," Applied Energy, Elsevier, vol. 373(C).
    2. Hu, Mingke & Guo, Chao & Zhao, Bin & Ao, Xianze & Suhendri, & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2021. "A parametric study on the performance characteristics of an evacuated flat-plate photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 167(C), pages 884-898.
    3. Li, Jinpeng & Chen, Xiangjie & Li, Guiqiang, 2023. "Effect of separation wavelength on a novel solar-driven hybrid hydrogen production system (SDHPS) by solar full spectrum energy," Renewable Energy, Elsevier, vol. 215(C).
    4. Li, Senji & Chen, Zhenwu & Liu, Xing & Zhang, Xiaochun & Zhou, Yong & Gu, Wenbo & Ma, Tao, 2021. "Numerical simulation of a novel pavement integrated photovoltaic thermal (PIPVT) module," Applied Energy, Elsevier, vol. 283(C).
    5. Cengiz, Mazlum & Kayri, İsmail & Aydın, Hüseyin, 2024. "A collated overview on the evaporative cooling applications for photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    6. Li, Guiqiang & Li, Jinpeng & Yang, Ruoxi & Chen, Xiangjie, 2022. "Performance analysis of a hybrid hydrogen production system in the integrations of PV/T power generation electrolytic water and photothermal cooperative reaction," Applied Energy, Elsevier, vol. 323(C).
    7. Tang, Xin & Li, Guiqiang & Zhao, Xudong & Shi, Kai & Lao, Li, 2022. "Simulation analysis and experimental validation of enhanced photovoltaic thermal module by harnessing heat," Applied Energy, Elsevier, vol. 309(C).
    8. Tian, Xinyi & Wang, Jun & Ji, Jie & Wang, Chuyao & Ke, Wei & Yuan, Shuang, 2023. "A multifunctional curved CIGS photovoltaic/thermal roof system: A numerical and experimental investigation," Energy, Elsevier, vol. 273(C).
    9. Zain Ul Abdin & Ahmed Rachid, 2021. "A Survey on Applications of Hybrid PV/T Panels," Energies, MDPI, vol. 14(4), pages 1-23, February.
    10. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities," Energies, MDPI, vol. 14(13), pages 1-48, June.
    11. Li, Xue & Chen, Ken & Su, Jianglei Michael & Zhou, Hai & Ren, Zhongyi & Zhao, Bin & Pei, Gang, 2025. "Performance study of a vacuum photovoltaic/thermal collector with spectral selectivity," Renewable Energy, Elsevier, vol. 239(C).
    12. Shiravi, Amir Hossein & Firoozzadeh, Mohammad & Lotfi, Marzieh, 2022. "Experimental study on the effects of air blowing and irradiance intensity on the performance of photovoltaic modules, using Central Composite Design," Energy, Elsevier, vol. 238(PA).
    13. Karami, Babak & Azimi, Neda & Ahmadi, Shahin, 2021. "Increasing the electrical efficiency and thermal management of a photovoltaic module using expanded graphite (EG)/paraffin-beef tallow-coconut oil composite as phase change material," Renewable Energy, Elsevier, vol. 178(C), pages 25-49.
    14. Hassan, Atazaz & Abbas, Sajid & Yousuf, Saima & Abbas, Fakhar & Amin, N.M. & Ali, Shujaat & Shahid Mastoi, Muhammad, 2023. "An experimental and numerical study on the impact of various parameters in improving the heat transfer performance characteristics of a water based photovoltaic thermal system," Renewable Energy, Elsevier, vol. 202(C), pages 499-512.
    15. Tang, Xin & Li, Guiqiang & Zhao, Xudong, 2021. "Effect of air gap on a novel hybrid photovoltaic/thermal and thermally regenerative electrochemical cycle system," Applied Energy, Elsevier, vol. 293(C).
    16. Zou, Wenlong & Yu, Gang & Du, Xiaoze, 2024. "Energy and exergy analysis of photovoltaic thermal collectors: Comprehensive investigation of operating parameters in different dynamic models," Renewable Energy, Elsevier, vol. 221(C).
    17. Madurai Elavarasan, Rajvikram & Pugazhendhi, Rishi & Shafiq, Saifullah & Gangatharan, Sivasankar & Nadarajah, Mithulananthan & Shafiullah, G.M., 2025. "Efficiency enhancement of PV panels with passive thermal management using PCM: An exhaustive review on materials, designs and effective techniques," Applied Energy, Elsevier, vol. 382(C).
    18. Abbas, Sajid & Zhou, Jinzhi & Hassan, Atazaz & Yuan, Yanping & Yousuf, Saima & Sun, Yafen & Zeng, Chao, 2023. "Economic evaluation and annual performance analysis of a novel series-coupled PV/T and solar TC with solar direct expansion heat pump system: An experimental and numerical study," Renewable Energy, Elsevier, vol. 204(C), pages 400-420.
    19. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    20. abbas, Sajid & Yuan, Yanping & Hassan, Atazaz & Zhou, Jinzhi & Zeng, Chao & Yu, Min & Emmanuel, Bisengimana, 2022. "Experimental and numerical investigation on a solar direct-expansion heat pump system employing PV/T & solar thermal collector as evaporator," Energy, Elsevier, vol. 254(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124022535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.