IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v239y2025ics0960148124022493.html
   My bibliography  Save this article

Structure-governed potassium retention mechanism in the slagging and non-slagging gasification condition of corn straw

Author

Listed:
  • Yuan, Mengran
  • Guo, Jing
  • He, Chong
  • Ilyushechkin, Alexander
  • Li, Xiaoming
  • Lu, Hao
  • Fan, Feifei
  • Wang, Zhigang
  • Qin, Yuhong
  • Wei, Yuexing
  • Bai, Jin
  • Li, Wen

Abstract

Understanding the potassium retention mechanism in biomass gasification is the key for mitigating the severe ash-related issues (deposition, low slag viscosity, etc.) to gasifier operation. In this study, the kaolin addition was effective in K retention in both non-slagging and slagging gasification conditions, albeit through distinct mechanisms. In the non-slagging condition, K retention in the dry ash was predominantly governed by the crystallization kinetics of minerals with various K retention abilities. Notably, leucite demonstrated the highest retention ability followed by kalsilite and KAlO2. In contrast, the K retention was mainly thermodynamically controlled in the slagging gasification condition. The charge-compensation effect of K+ to the four-coordinated Al3+ was key for the K retention, and the Si-O-Al bond was converted to Si-O-KAl with kaolin addition. Moreover, a novel method for determining the Gibbs free energy (ΔG) of slag in the K capture reaction was introduced, demonstrating a decrease in ΔG from −16.66 kJ/(mol⋅K−1) to −57.67 kJ/(mol⋅K−1) with a 5 wt% kaolin addition, resulting in a 38.46 % increase in K retention. Finally, the viscosity of the biomass slag was empirically correlated with the K release ratio (R2 = 0.95), providing one stone for two birds strategy for addressing ash deposition and slag mobility issues.

Suggested Citation

  • Yuan, Mengran & Guo, Jing & He, Chong & Ilyushechkin, Alexander & Li, Xiaoming & Lu, Hao & Fan, Feifei & Wang, Zhigang & Qin, Yuhong & Wei, Yuexing & Bai, Jin & Li, Wen, 2025. "Structure-governed potassium retention mechanism in the slagging and non-slagging gasification condition of corn straw," Renewable Energy, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124022493
    DOI: 10.1016/j.renene.2024.122181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Chunguang & Rosén, Christer & Engvall, Klas, 2016. "Biomass oxygen/steam gasification in a pressurized bubbling fluidized bed: Agglomeration behavior," Applied Energy, Elsevier, vol. 172(C), pages 230-250.
    2. Zhang, Ziyin & Pang, Shusheng & Levi, Tana, 2017. "Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass," Renewable Energy, Elsevier, vol. 101(C), pages 356-363.
    3. Yao, Xiwen & Zhao, Zhicheng & Li, Jishuo & Zhang, Bohan & Zhou, Haodong & Xu, Kaili, 2020. "Experimental investigation of physicochemical and slagging characteristics of inorganic constituents in ash residues from gasification of different herbaceous biomass," Energy, Elsevier, vol. 198(C).
    4. Qi, Jianhui & Li, Hui & Han, Kuihua & Zuo, Qi & Gao, Jie & Wang, Qian & Lu, Chunmei, 2016. "Influence of ammonium dihydrogen phosphate on potassium retention and ash melting characteristics during combustion of biomass," Energy, Elsevier, vol. 102(C), pages 244-251.
    5. Zhang, Weiwei & Huang, Sheng & Wu, Shiyong & Wu, Youqing & Gao, Jinsheng, 2020. "Ash fusion characteristics and gasification activity during biomasses co-gasification process," Renewable Energy, Elsevier, vol. 147(P1), pages 1584-1594.
    6. Xu, Jie & Wang, Ju & Du, Chunhua & Li, Shuaidan & Liu, Xia, 2020. "Understanding fusibility characteristics and flow properties of the biomass and biomass-coal ash samples," Renewable Energy, Elsevier, vol. 147(P1), pages 1352-1357.
    7. Safarian, Sahar & Unnþórsson, Rúnar & Richter, Christiaan, 2019. "A review of biomass gasification modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 378-391.
    8. Qi, Jianhui & Han, Kuihua & Wang, Qian & Gao, Jie, 2017. "Carbonization of biomass: Effect of additives on alkali metals residue, SO2 and NO emission of chars during combustion," Energy, Elsevier, vol. 130(C), pages 560-569.
    9. Wang, Qian & Han, Kuihua & Wang, Jiamin & Gao, Jie & Lu, Chunmei, 2017. "Influence of phosphorous based additives on ash melting characteristics during combustion of biomass briquette fuel," Renewable Energy, Elsevier, vol. 113(C), pages 428-437.
    10. Míguez, José Luis & Porteiro, Jacobo & Behrendt, Frank & Blanco, Diana & Patiño, David & Dieguez-Alonso, Alba, 2021. "Review of the use of additives to mitigate operational problems associated with the combustion of biomass with high content in ash-forming species," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Heng & Hao, Zhenhua & Li, Junguo & Yang, Xin & Wang, Zhiqing & Liu, Zheyu & Huang, Jiejie & Zhang, Yongqi & Fang, Yitian, 2021. "Effect of coal ash additive on potassium fixation and melting behaviors of the mixture under simulated biomass gasification condition," Renewable Energy, Elsevier, vol. 168(C), pages 806-814.
    2. Wang, Qian & Han, Kuihua & Wang, Peifu & Li, Shijie & Zhang, Mingyang, 2020. "Influence of additive on ash and combustion characteristics during biomass combustion under O2/CO2 atmosphere," Energy, Elsevier, vol. 195(C).
    3. Ziqiang Yang & Fenghai Li & Mingjie Ma & Xuefei Liu & Hongli Fan & Zhenzhu Li & Yong Wang & Yitian Fang, 2023. "Regulation Mechanism of Solid Waste on Ash Fusion Characteristics of Sorghum Straw under O 2 /CO 2 Atmosphere," Energies, MDPI, vol. 16(20), pages 1-17, October.
    4. Zhang, Heng & Li, Junguo & Yang, Xin & Song, Shuangshuang & Wang, Zhiqing & Huang, Jiejie & Zhang, Yongqi & Fang, Yitian, 2020. "Influence of coal ash on CO2 gasification reactivity of corn stalk char," Renewable Energy, Elsevier, vol. 147(P1), pages 2056-2063.
    5. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.
    6. Aamer Bilal Asghar & Saad Farooq & Muhammad Shahzad Khurram & Mujtaba Hussain Jaffery & Krzysztof Ejsmont, 2021. "Estimation of the Solid Circulation Rate in Circulating Fluidized Bed System Using Adaptive Neuro-Fuzzy Algorithm," Energies, MDPI, vol. 15(1), pages 1-17, December.
    7. Li, Fenghai & Li, Yang & Fan, Hongli & Wang, Tao & Guo, Mingxi & Fang, Yitian, 2019. "Investigation on fusion characteristics of deposition from biomass vibrating grate furnace combustion and its modification," Energy, Elsevier, vol. 174(C), pages 724-734.
    8. Zheng, Liangqian & Jin, Jing & Zhang, Ruipu & Liu, Zhongyi & Zhang, Li, 2023. "Understanding the effect of dolomite additive on corrosion characteristics of straw biomass ash through experiment study and molecular dynamics calculations," Energy, Elsevier, vol. 271(C).
    9. Jianhui Qi & Haopeng Li & Qian Wang & Kuihua Han, 2021. "Combustion Characteristics, Kinetics, SO 2 and NO Release of Low-Grade Biomass Materials and Briquettes," Energies, MDPI, vol. 14(9), pages 1-13, May.
    10. Reinmöller, Markus & Schreiner, Marcus & Laabs, Marcel & Scharm, Christoph & Yao, Zhitong & Guhl, Stefan & Neuroth, Manuela & Meyer, Bernd & Gräbner, Martin, 2023. "Formation and transformation of mineral phases in biomass ashes and evaluation of the feedstocks for application in high-temperature processes," Renewable Energy, Elsevier, vol. 210(C), pages 627-639.
    11. Hariana, & Ghazidin, Hafizh & Putra, Hanafi Prida & Darmawan, Arif & Prabowo, & Hilmawan, Edi & Aziz, Muhammad, 2023. "The effects of additives on deposit formation during co-firing of high-sodium coal with high-potassium and -chlorine biomass," Energy, Elsevier, vol. 271(C).
    12. Liu, Zhongyi & Jin, Jing & Zheng, Liangqian & Zhang, Ruipu & Dong, Bo & Liang, Guowei & Zhai, Zhongyuan, 2023. "Adhesion strength of straw biomass ash: Effect of dolomite additive," Energy, Elsevier, vol. 262(PA).
    13. Ferreiro, A.I. & Segurado, R. & Costa, M., 2020. "Modelling soot formation during biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    15. Bhattarai, Ashish & Kafle, Sagar & Sakhakarmy, Manish & Moogi, Surendar & Adhikari, Sushil, 2024. "Fluidized-bed gasification kinetics model development using genetic algorithm for biomass, coal, municipal plastic waste, and their blends," Energy, Elsevier, vol. 313(C).
    16. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    17. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    18. Li, Fenghai & Liu, Quanrun & Li, Meng & Fang, Yitian, 2018. "Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics," Energy, Elsevier, vol. 150(C), pages 142-152.
    19. Chapela, Sergio & Cid, Natalia & Porteiro, Jacobo & Míguez, José Luis, 2020. "Numerical transient modelling of the fouling phenomena and its influence on thermal performance in a low-scale biomass shell boiler," Renewable Energy, Elsevier, vol. 161(C), pages 309-318.
    20. Santhappan, Joseph Sekhar & Boddu, Muralikrishna & Gopinath, Arun S. & Mathimani, Thangavel, 2024. "Analysis of 27 supervised machine learning models for the co-gasification assessment of peanut shell and spent tea residue in an open-core downdraft gasifier," Renewable Energy, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124022493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.