IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2655-d549371.html
   My bibliography  Save this article

Combustion Characteristics, Kinetics, SO 2 and NO Release of Low-Grade Biomass Materials and Briquettes

Author

Listed:
  • Jianhui Qi

    (Shandong Engineering Laboratory for High-Efficiency Energy Conservation and Energy Storage Technology & Equipment, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
    Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China)

  • Haopeng Li

    (Shandong Engineering Laboratory for High-Efficiency Energy Conservation and Energy Storage Technology & Equipment, School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Qian Wang

    (School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China)

  • Kuihua Han

    (Shandong Engineering Laboratory for High-Efficiency Energy Conservation and Energy Storage Technology & Equipment, School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

Abstract

The influence of the briquetting process on SO 2 and NO release characteristics, combustion properties and kinetic characteristics during biomass combustion was investigated. Two biomass (Wheat straw and Tree bulk) and two obtained briquettes were analysed. The briquetting process helps to prevent the release of SO 2 and NO. The experimental results show that once the biomass is made into a briquette, when the reaction temperature is 900 ∘ C , the sulphur release ratio for TB was reduced from 34.7% to 4.3% and for WS was reduced from 12.4% to 1.6%. When the reaction temperature increases to 1000 ∘ C , the sulphur release ratio for TB was reduced from 73.4% to 30.4%, for WS it was reduced from 58.4% to 10.2%. SEM micrographs show that the compact structure of the TB-Briquette and WS-Briquette reduce the rate of SO 2 and NO release during combustion. The thermogravimetry confirmed that the combustion performance of WS-Briquette is the best, while the TB-Briquette is the worst. According to the Coats-Redfern method, the fitting was performed at segments of 250 ∘ C to 550 ∘ C , and the correlation coefficient of the fitting degree was above 0.99. The effective collision rate of WS-Briquette is much higher than that of other briquettes. Compared to BR-1 and BR-2, trying to mix TB with WS to make a compound biomass briquette can enhance the combustion performance of TB-Briquette. The results may guide the upgrading of biomass briquettes technology and benefit the efficient application of biomass briquettes.

Suggested Citation

  • Jianhui Qi & Haopeng Li & Qian Wang & Kuihua Han, 2021. "Combustion Characteristics, Kinetics, SO 2 and NO Release of Low-Grade Biomass Materials and Briquettes," Energies, MDPI, vol. 14(9), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2655-:d:549371
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2655/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2655/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrés Niño & Nelson Arzola & Oscar Araque, 2020. "Experimental Study on the Mechanical Properties of Biomass Briquettes from a Mixture of Rice Husk and Pine Sawdust," Energies, MDPI, vol. 13(5), pages 1-19, February.
    2. Qi, Jianhui & Han, Kuihua & Wang, Qian & Gao, Jie, 2017. "Carbonization of biomass: Effect of additives on alkali metals residue, SO2 and NO emission of chars during combustion," Energy, Elsevier, vol. 130(C), pages 560-569.
    3. Qi, Jianhui & Li, Hui & Han, Kuihua & Zuo, Qi & Gao, Jie & Wang, Qian & Lu, Chunmei, 2016. "Influence of ammonium dihydrogen phosphate on potassium retention and ash melting characteristics during combustion of biomass," Energy, Elsevier, vol. 102(C), pages 244-251.
    4. Zhou, Yuguang & Zhang, Zongxi & Zhang, Yixiang & Wang, Yungang & Yu, Yang & Ji, Fang & Ahmad, Riaz & Dong, Renjie, 2016. "A comprehensive review on densified solid biofuel industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1412-1428.
    5. Han, Kuihua & Gao, Jie & Qi, Jianhui, 2019. "The study of sulphur retention characteristics of biomass briquettes during combustion," Energy, Elsevier, vol. 186(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qian & Cao, Qiankun & Wang, Rui & Wang, Peifu & Zhao, Yanhua & Li, Shijie & Han, Feifei, 2023. "Influence of phosphorus based additives on nitrogen and sulfur pollutants emissions during densified biochar combustion," Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.
    2. Aamer Bilal Asghar & Saad Farooq & Muhammad Shahzad Khurram & Mujtaba Hussain Jaffery & Krzysztof Ejsmont, 2021. "Estimation of the Solid Circulation Rate in Circulating Fluidized Bed System Using Adaptive Neuro-Fuzzy Algorithm," Energies, MDPI, vol. 15(1), pages 1-17, December.
    3. Zacharczuk, Wojciech & Andruszkiewicz, Artur & Tatarek, Andrzej & Alahmer, Ali & Alsaqoor, Sameh, 2021. "Effect of Ca-based additives on the capture of SO2 during combustion of pulverized lignite," Energy, Elsevier, vol. 231(C).
    4. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    5. Wang, Qian & Han, Kuihua & Wang, Peifu & Li, Shijie & Zhang, Mingyang, 2020. "Influence of additive on ash and combustion characteristics during biomass combustion under O2/CO2 atmosphere," Energy, Elsevier, vol. 195(C).
    6. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    7. Huan Li & Huawei Mou & Nan Zhao & Yaohong Yu & Quan Hong & Mperejekumana Philbert & Yuguang Zhou & Hossein Beidaghy Dizaji & Renjie Dong, 2021. "Nitrogen Migration during Pyrolysis of Raw and Acid Leached Maize Straw," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    8. Yaxin Ge & Guangyi Zhang & Jianling Zhang & Wennan Zhang & Lijie Cui, 2022. "Emission Characteristics of NO x and SO 2 during the Combustion of Antibiotic Mycelial Residue," IJERPH, MDPI, vol. 19(3), pages 1-14, January.
    9. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    10. Ziqiang Yang & Fenghai Li & Mingjie Ma & Xuefei Liu & Hongli Fan & Zhenzhu Li & Yong Wang & Yitian Fang, 2023. "Regulation Mechanism of Solid Waste on Ash Fusion Characteristics of Sorghum Straw under O 2 /CO 2 Atmosphere," Energies, MDPI, vol. 16(20), pages 1-17, October.
    11. Yasmin, Nazia & Grundmann, Philipp, 2019. "Adoption and diffusion of renewable energy – The case of biogas as alternative fuel for cooking in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 255-264.
    12. Shizhong Song & Pei Liu & Jing Xu & Linwei Ma & Chinhao Chong & Min He & Xianzheng Huang & Zheng Li & Weidou Ni, 2016. "An Economic and Policy Analysis of a District Heating System Using Corn Straw Densified Fuel: A Case Study in Nong’an County in Jilin Province, China," Energies, MDPI, vol. 10(1), pages 1-22, December.
    13. Bijendra Shrestha & Jetsada Posom & Panmanas Sirisomboon & Bim Prasad Shrestha, 2023. "Comprehensive Assessment of Biomass Properties for Energy Usage Using Near-Infrared Spectroscopy and Spectral Multi-Preprocessing Techniques," Energies, MDPI, vol. 16(14), pages 1-26, July.
    14. Silva, F.T.M. & Ataíde, C.H., 2019. "Valorization of eucalyptus urograndis wood via carbonization: Product yields and characterization," Energy, Elsevier, vol. 172(C), pages 509-516.
    15. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    16. Yin, Chungen, 2020. "Development in biomass preparation for suspension firing towards higher biomass shares and better boiler performance and fuel rangeability," Energy, Elsevier, vol. 196(C).
    17. Khiari, Besma & Jeguirim, Mejdi & Limousy, Lionel & Bennici, Simona, 2019. "Biomass derived chars for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 253-273.
    18. Xin Zhang & Yun-Ze Li & Ao-Bing Wang & Li-Jun Gao & Hui-Juan Xu & Xian-Wen Ning, 2020. "The Development Strategies and Technology Roadmap of Bioenergy for a Typical Region: A Case Study in the Beijing-Tianjin-Hebei Region in China," Energies, MDPI, vol. 13(4), pages 1-25, February.
    19. Tirkey, Jeewan Vachan & Kumar, Ajeet & Singh, Deepak Kumar, 2022. "Energy consumption, greenhouse gas emissions and economic feasibility studies of biodiesel production from Mahua (Madhuca longifolia) in India," Energy, Elsevier, vol. 249(C).
    20. Mariusz Jerzy Stolarski & Paweł Dudziec & Ewelina Olba-Zięty & Paweł Stachowicz & Michał Krzyżaniak, 2022. "Forest Dendromass as Energy Feedstock: Diversity of Properties and Composition Depending on Systematic Genus and Organ," Energies, MDPI, vol. 15(4), pages 1-60, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2655-:d:549371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.