IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v239y2025ics0960148124022006.html
   My bibliography  Save this article

Study on bias correction method of ECMWF surface variable forecasts based on deep learning

Author

Listed:
  • Guo, Shuchang
  • Yang, Yi
  • Zhang, Feimin
  • Wang, Jinyan
  • Cheng, Yifan

Abstract

Wind power is affected by various meteorological conditions, including wind speed and temperature, leading to significant volatility that can impact the safety of grid operations. Numerical weather prediction (NWP) is an efficient technique for predicting wind power. To enhance the accuracy of wind power prediction, this study proposed a correction model based on convolutional neural network to reduce the error of NWP surface products. When applying the correction model to the forecasts of NWP in June 2019, the results showed a significant reduction in errors in western China. Moreover, the effect of the correction model was better than that of the correction model trained only with surface variables, after the inclusion of upper-air variables. To reduce computational effort, this study also investigated the impact of different resolution training datasets on the correction effect. The results showed that a correction model trained with low-resolution data can achieve the same effect as that trained with high-resolution data. This study supports improving the accuracy of NWP surface products and reducing the computational effort of correction models.

Suggested Citation

  • Guo, Shuchang & Yang, Yi & Zhang, Feimin & Wang, Jinyan & Cheng, Yifan, 2025. "Study on bias correction method of ECMWF surface variable forecasts based on deep learning," Renewable Energy, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124022006
    DOI: 10.1016/j.renene.2024.122132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124022006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.