IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v239y2025ics0960148124022006.html
   My bibliography  Save this article

Study on bias correction method of ECMWF surface variable forecasts based on deep learning

Author

Listed:
  • Guo, Shuchang
  • Yang, Yi
  • Zhang, Feimin
  • Wang, Jinyan
  • Cheng, Yifan

Abstract

Wind power is affected by various meteorological conditions, including wind speed and temperature, leading to significant volatility that can impact the safety of grid operations. Numerical weather prediction (NWP) is an efficient technique for predicting wind power. To enhance the accuracy of wind power prediction, this study proposed a correction model based on convolutional neural network to reduce the error of NWP surface products. When applying the correction model to the forecasts of NWP in June 2019, the results showed a significant reduction in errors in western China. Moreover, the effect of the correction model was better than that of the correction model trained only with surface variables, after the inclusion of upper-air variables. To reduce computational effort, this study also investigated the impact of different resolution training datasets on the correction effect. The results showed that a correction model trained with low-resolution data can achieve the same effect as that trained with high-resolution data. This study supports improving the accuracy of NWP surface products and reducing the computational effort of correction models.

Suggested Citation

  • Guo, Shuchang & Yang, Yi & Zhang, Feimin & Wang, Jinyan & Cheng, Yifan, 2025. "Study on bias correction method of ECMWF surface variable forecasts based on deep learning," Renewable Energy, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124022006
    DOI: 10.1016/j.renene.2024.122132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Bauer & Alan Thorpe & Gilbert Brunet, 2015. "The quiet revolution of numerical weather prediction," Nature, Nature, vol. 525(7567), pages 47-55, September.
    2. Bouche, Dimitri & Flamary, Rémi & d’Alché-Buc, Florence & Plougonven, Riwal & Clausel, Marianne & Badosa, Jordi & Drobinski, Philippe, 2023. "Wind power predictions from nowcasts to 4-hour forecasts: A learning approach with variable selection," Renewable Energy, Elsevier, vol. 211(C), pages 938-947.
    3. Liu, Fa & Sun, Fubao & Liu, Wenbin & Wang, Tingting & Wang, Hong & Wang, Xunming & Lim, Wee Ho, 2019. "On wind speed pattern and energy potential in China," Applied Energy, Elsevier, vol. 236(C), pages 867-876.
    4. Sun, Gaiping & Jiang, Chuanwen & Cheng, Pan & Liu, Yangyang & Wang, Xu & Fu, Yang & He, Yang, 2018. "Short-term wind power forecasts by a synthetical similar time series data mining method," Renewable Energy, Elsevier, vol. 115(C), pages 575-584.
    5. Markovics, Dávid & Mayer, Martin János, 2022. "Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Wei Fang & Cheng Yang & Dengfeng Liu & Qiang Huang & Bo Ming & Long Cheng & Lu Wang & Gang Feng & Jianan Shang, 2023. "Assessment of Wind and Solar Power Potential and Their Temporal Complementarity in China’s Northwestern Provinces: Insights from ERA5 Reanalysis," Energies, MDPI, vol. 16(20), pages 1-23, October.
    7. Suman Ravuri & Karel Lenc & Matthew Willson & Dmitry Kangin & Remi Lam & Piotr Mirowski & Megan Fitzsimons & Maria Athanassiadou & Sheleem Kashem & Sam Madge & Rachel Prudden & Amol Mandhane & Aidan C, 2021. "Skilful precipitation nowcasting using deep generative models of radar," Nature, Nature, vol. 597(7878), pages 672-677, September.
    8. Dupré, Aurore & Drobinski, Philippe & Alonzo, Bastien & Badosa, Jordi & Briard, Christian & Plougonven, Riwal, 2020. "Sub-hourly forecasting of wind speed and wind energy," Renewable Energy, Elsevier, vol. 145(C), pages 2373-2379.
    9. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Nissen, J.N., 2015. "A novel application of an analog ensemble for short-term wind power forecasting," Renewable Energy, Elsevier, vol. 76(C), pages 768-781.
    10. Li, Jidong & Chen, Shijun & Wu, Yuqiang & Wang, Qinhui & Liu, Xing & Qi, Lijian & Lu, Xiuyuan & Gao, Lu, 2021. "How to make better use of intermittent and variable energy? A review of wind and photovoltaic power consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Ahmad, Shahryar Khalique & Hossain, Faisal, 2020. "Maximizing energy production from hydropower dams using short-term weather forecasts," Renewable Energy, Elsevier, vol. 146(C), pages 1560-1577.
    12. Castorrini, Alessio & Gentile, Sabrina & Geraldi, Edoardo & Bonfiglioli, Aldo, 2023. "Investigations on offshore wind turbine inflow modelling using numerical weather prediction coupled with local-scale computational fluid dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Du & Shuaizhi Chen & Linlin Pan & Yubao Liu, 2025. "A Wind Speed Prediction Method Based on Signal Decomposition Technology Deep Learning Model," Energies, MDPI, vol. 18(5), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    2. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    3. Liu, Chenyu & Zhang, Xuemin & Mei, Shengwei & Zhen, Zhao & Jia, Mengshuo & Li, Zheng & Tang, Haiyan, 2022. "Numerical weather prediction enhanced wind power forecasting: Rank ensemble and probabilistic fluctuation awareness," Applied Energy, Elsevier, vol. 313(C).
    4. Yang, Dazhi & Kleissl, Jan, 2023. "Summarizing ensemble NWP forecasts for grid operators: Consistency, elicitability, and economic value," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1640-1654.
    5. Zucatelli, P.J. & Nascimento, E.G.S. & Santos, A.Á.B. & Arce, A.M.G. & Moreira, D.M., 2021. "An investigation on deep learning and wavelet transform to nowcast wind power and wind power ramp: A case study in Brazil and Uruguay," Energy, Elsevier, vol. 230(C).
    6. Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Kim, Deockho & Hur, Jin, 2018. "Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method," Energy, Elsevier, vol. 157(C), pages 211-226.
    8. Ogliari, Emanuele & Sakwa, Maciej & Cusa, Paolo, 2024. "Enhanced Convolutional Neural Network for solar radiation nowcasting: All-Sky camera infrared images embedded with exogeneous parameters," Renewable Energy, Elsevier, vol. 221(C).
    9. Markus Reichstein & Vitus Benson & Jan Blunk & Gustau Camps-Valls & Felix Creutzig & Carina J. Fearnley & Boran Han & Kai Kornhuber & Nasim Rahaman & Bernhard Schölkopf & José María Tárraga & Ricardo , 2025. "Early warning of complex climate risk with integrated artificial intelligence," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    10. Bouche, Dimitri & Flamary, Rémi & d’Alché-Buc, Florence & Plougonven, Riwal & Clausel, Marianne & Badosa, Jordi & Drobinski, Philippe, 2023. "Wind power predictions from nowcasts to 4-hour forecasts: A learning approach with variable selection," Renewable Energy, Elsevier, vol. 211(C), pages 938-947.
    11. Xueliang Zhao & Qilong Sun & Xiaoguang Lin, 2023. "Physical Attention-Gated Spatial-Temporal Predictive Network for Weather Forecasting," Mathematics, MDPI, vol. 11(6), pages 1-10, March.
    12. Mayer, Martin János & Yang, Dazhi, 2022. "Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Tai, Sheng-Lun & Gaudet, Brian & Feng, Sha & Krishnamurthy, Raghavendra & Berg, Larry K. & Fast, Jerome D., 2025. "Characterizing model uncertainties in simulated coast-to-offshore wind over the northeast U.S. using multi-platform measurements from the TCAP field campaign," Renewable Energy, Elsevier, vol. 239(C).
    14. Chitsazan, Mohammad Amin & Sami Fadali, M. & Trzynadlowski, Andrzej M., 2019. "Wind speed and wind direction forecasting using echo state network with nonlinear functions," Renewable Energy, Elsevier, vol. 131(C), pages 879-889.
    15. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    16. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    17. He, Shaokun & Li, BinBin & Li, Qianxun & Zheng, Hezhen & Chen, Yingjian, 2025. "Refining hydropower operation by dynamic control of cascade reservoir water levels with flood season segmentation," Energy, Elsevier, vol. 314(C).
    18. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    19. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    20. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124022006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.