IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics0960148124010863.html

The balance issue of the proportion between new energy and traditional thermal power: An important issue under today's low-carbon goal in developing countries

Author

Listed:
  • Chen, Yunxiao
  • Lin, Chaojing
  • Zhang, Yilan
  • Liu, Jinfu
  • Yu, Daren

Abstract

The stability of the new power system depends on the balance between controllable flexible resources and uncontrollable uncertain resources. For many developing countries and regions lacking advanced flexible resources, thermal power is the main force in solving the problem of new energy consumption. Finding the balance between new energy and traditional thermal power is the key for today's low-carbon goal. To solve this problem, this paper calculates the power range and climbing rate range of thermal power based on physical principles and actual data, and characterizes the characteristics of wind power, photovoltaic power, load and net load based on the five proposed volatility indicators. Then, a logically clear method for determining the required number of thermal power units based on the volatility indicators of new energy from the mechanism and principle perspective is proposed. Finally, under the premise of meeting the power balance and flexibility balance of the power system, the reasonable ratios between the installed capacity of new energy and the number of thermal power units are calculated in four seasons. The results indicate that the judgment system can provide guidance for the energy structure of developing regions.

Suggested Citation

  • Chen, Yunxiao & Lin, Chaojing & Zhang, Yilan & Liu, Jinfu & Yu, Daren, 2024. "The balance issue of the proportion between new energy and traditional thermal power: An important issue under today's low-carbon goal in developing countries," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010863
    DOI: 10.1016/j.renene.2024.121018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124010863
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).
    2. Hajou, Anas & El Mghouchi, Youness & Chaoui, Mohamed, 2024. "A new solar-wind complementarity index: An application to the climate of Morocco," Renewable Energy, Elsevier, vol. 227(C).
    3. Xiao, Yiyong & Zhang, Yue & Kaku, Ikou & Kang, Rui & Pan, Xing, 2021. "Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Limouni, Tariq & Yaagoubi, Reda & Bouziane, Khalid & Guissi, Khalid & Baali, El Houssain, 2023. "Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model," Renewable Energy, Elsevier, vol. 205(C), pages 1010-1024.
    5. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren & Söder, Lennart, 2018. "Analysis of wind power intermittency based on historical wind power data," Energy, Elsevier, vol. 150(C), pages 482-492.
    6. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    7. Liu, Zhan & Ding, Jialu & Huang, Xinyu & Liu, Zhengguang & Yan, Xuewen & Liu, Xianglei & Yang, Xiaohu, 2024. "Analysis of a hybrid heat and underwater compressed air energy storage system used at coastal areas," Applied Energy, Elsevier, vol. 354(PA).
    8. Massidda, Luca & Marrocu, Marino, 2023. "Total and thermal load forecasting in residential communities through probabilistic methods and causal machine learning," Applied Energy, Elsevier, vol. 351(C).
    9. Carpentieri, A. & Folini, D. & Nerini, D. & Pulkkinen, S. & Wild, M. & Meyer, A., 2023. "Intraday probabilistic forecasts of surface solar radiation with cloud scale-dependent autoregressive advection," Applied Energy, Elsevier, vol. 351(C).
    10. Deetjen, Thomas A. & Martin, Henry & Rhodes, Joshua D. & Webber, Michael E., 2018. "Modeling the optimal mix and location of wind and solar with transmission and carbon pricing considerations," Renewable Energy, Elsevier, vol. 120(C), pages 35-50.
    11. Guan, Hongyu & Yin, Xiuxing & Jiang, Wei, 2024. "Towards the integration of distributed renewables: Operation analysis of pumped storage system under off-design condition based on CFD," Applied Energy, Elsevier, vol. 355(C).
    12. Wang, Wenting & Yang, Dazhi & Huang, Nantian & Lyu, Chao & Zhang, Gang & Han, Xueying, 2022. "Irradiance-to-power conversion based on physical model chain: An application on the optimal configuration of multi-energy microgrid in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Capelletti, Marco & Raimondo, Davide M. & De Nicolao, Giuseppe, 2024. "Wind power curve modeling: A probabilistic Beta regression approach," Renewable Energy, Elsevier, vol. 223(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Yufei & Wu, Fengping & Zhang, Lina & Wu, Xiaoyuan & Zhuang, Yuan & Wang, Xiaoyu & Wang, Yu, 2025. "A two-stage allocation framework for renewable energy quotas in China: integrating potential and efficiency," Energy, Elsevier, vol. 326(C).
    2. Zhang, Bo & Song, Xuehang & Zhang, Chuan & Wei, Wei & Sun, Nannan, 2025. "An energy storage roadmap study incorporating government subsidies based on a combined tripartite evolutionary game and Monte Carlo simulation approach: evidence from China," Energy, Elsevier, vol. 331(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenyuan Sun & Shuailing Ma & Yufei Zhang & Yingai Jin & Firoz Alam, 2025. "Multi-Energy-Microgrid Energy Management Strategy Optimisation Using Deep Learning," Energies, MDPI, vol. 18(12), pages 1-28, June.
    2. Li, Baojie & Chen, Xin & Jain, Anubhav, 2024. "Power modeling of degraded PV systems: Case studies using a dynamically updated physical model (PV-Pro)," Renewable Energy, Elsevier, vol. 236(C).
    3. Taimoor Ahmad Khan & Amjad Ullah & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Faheem Ali & Sajjad Ali & Sheraz Khan & Khalid Rehman, 2022. "A Fractional Order Super Twisting Sliding Mode Controller for Energy Management in Smart Microgrid Using Dynamic Pricing Approach," Energies, MDPI, vol. 15(23), pages 1-14, November.
    4. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    5. Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
    6. Deng, Song & Dong, Xia & Tao, Li & Wang, Junjie & He, Yi & Yue, Dong, 2024. "Multi-type load forecasting model based on random forest and density clustering with the influence of noise and load patterns," Energy, Elsevier, vol. 307(C).
    7. Gitae Kim, 2024. "Electric Vehicle Routing Problem with States of Charging Stations," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    8. Hee-Kwan Shin & Jae-Min Cho & Eul-Bum Lee, 2019. "Electrical Power Characteristics and Economic Analysis of Distributed Generation System Using Renewable Energy: Applied to Iron and Steel Plants," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    9. Guo, Su & Fan, Huiying & Huang, Jing, 2025. "Ultra-short-term PV power prediction based on an improved hybrid model with sky image features and data two-dimensional purification," Energy, Elsevier, vol. 331(C).
    10. Yu, Solui & Hur, Jin, 2025. "An enhanced critical operating constraint forecasting (COCF) for power grids with large scale wind generating resources," Energy, Elsevier, vol. 331(C).
    11. Li, Jianfang & Jia, Li & Zhou, Chengyu, 2024. "Probability density function based adaptive ensemble learning with global convergence for wind power prediction," Energy, Elsevier, vol. 312(C).
    12. Lin, Huapeng & Gao, Liyuan & Cui, Mingtao & Liu, Hengchao & Li, Chunyang & Yu, Miao, 2025. "Short-term distributed photovoltaic power prediction based on temporal self-attention mechanism and advanced signal decomposition techniques with feature fusion," Energy, Elsevier, vol. 315(C).
    13. Maksymilian Mądziel & Tiziana Campisi, 2024. "Predictive Artificial Intelligence Models for Energy Efficiency in Hybrid and Electric Vehicles: Analysis for Enna, Sicily," Energies, MDPI, vol. 17(19), pages 1-19, September.
    14. Mo, Fan & Jiao, Xuan & Li, Xingshuo & Du, Yang & Yao, Yunting & Meng, Yuxiang & Ding, Shuye, 2024. "A novel multi-step ahead solar power prediction scheme by deep learning on transformer structure," Renewable Energy, Elsevier, vol. 230(C).
    15. Ajith, Meenu & Martínez-Ramón, Manel, 2023. "Deep learning algorithms for very short term solar irradiance forecasting: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    16. Mirza, Adeel Feroz & Mansoor, Majad & Usman, Muhammad & Ling, Qiang, 2023. "A comprehensive approach for PV wind forecasting by using a hyperparameter tuned GCVCNN-MRNN deep learning model," Energy, Elsevier, vol. 283(C).
    17. Amro M Elshurafa & Abdel Rahman Muhsen, 2019. "The Upper Limit of Distributed Solar PV Capacity in Riyadh: A GIS-Assisted Study," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    18. Sina Abbasi & Maryam Moosivand & Ilias Vlachos & Mohammad Talooni, 2023. "Designing the Location–Routing Problem for a Cold Supply Chain Considering the COVID-19 Disaster," Sustainability, MDPI, vol. 15(21), pages 1-24, October.
    19. Wang, Jujie & Jiang, Weiyi & Shu, Shuqin & He, Xuecheng, 2025. "A multi-factor clustering integration paradigm for wind speed point-interval prediction based on feature selection and optimized inverted transformer," Energy, Elsevier, vol. 320(C).
    20. Wang, Wenting & Guo, Yufeng & Yang, Dazhi & Zhang, Zili & Kleissl, Jan & van der Meer, Dennis & Yang, Guoming & Hong, Tao & Liu, Bai & Huang, Nantian & Mayer, Martin János, 2024. "Economics of physics-based solar forecasting in power system day-ahead scheduling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.