IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3111-d1677834.html
   My bibliography  Save this article

Multi-Energy-Microgrid Energy Management Strategy Optimisation Using Deep Learning

Author

Listed:
  • Wenyuan Sun

    (National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
    College of Automotive Engineering, Jilin University, Changchun 130022, China)

  • Shuailing Ma

    (National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
    College of Automotive Engineering, Jilin University, Changchun 130022, China)

  • Yufei Zhang

    (National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
    College of Automotive Engineering, Jilin University, Changchun 130022, China)

  • Yingai Jin

    (National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
    College of Automotive Engineering, Jilin University, Changchun 130022, China)

  • Firoz Alam

    (School of Engineering (Aerospace, Mechanical and Manufacturing), RMIT University, Melbourne, VIC 3000, Australia)

Abstract

Renewable power generation is unpredictable due to its intermittency, making grid-connected microgrids difficult to operate, control, and manage. Currently used prediction models for electricity, heat, gas, and hydrogen multi-energy complementary microgrids with the carbon trading mechanism are inefficient as they cannot account for all eventualities and are not well studied. Therefore, a two-stage robust optimisation model based on Bidirectional Temporal Convolutional Networks (BiTCN) and Transformer prediction for electricity, heat, gas, and hydrogen multi-energy complementary microgrids with a carbon trading mechanism is proposed to solve this problem. First, BiTCN extracts implicit wind speed and wind power output sequences from historical data and feeds it into the Transformer model for point prediction using the attention mechanism. Ablation computation modelling is then performed. The proposed prediction model’s Mean Absolute Error (MAE) is found to be 1.3512, and its R 2 is 0.9683, proving its efficacy and reliability. Second, the proposed model is used to perform interval prediction in two typical scenarios: high wind power and low wind power. After constructing the robust optimisation model uncertainty set based on the prediction results, simulation experiments are performed on the proposed optimisation model. The simulation results suggest that the proposed optimisation model enhances renewable energy use, emissions reductions, microgrid operating costs, and system reliability. The study also reveals that the total system cost and carbon emission cost in the low wind scenario are 283% (2.83 times) and 314% (3.14 times) higher than in the high wind scenario; hence, a significant percentage of renewable energy is needed for microgrid stability.

Suggested Citation

  • Wenyuan Sun & Shuailing Ma & Yufei Zhang & Yingai Jin & Firoz Alam, 2025. "Multi-Energy-Microgrid Energy Management Strategy Optimisation Using Deep Learning," Energies, MDPI, vol. 18(12), pages 1-28, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3111-:d:1677834
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3111/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3111/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Miaomiao & Long, Zijuan & Liu, Xiangjie & Lee, Kwang Y., 2025. "Distributionally robust optimization of electric–thermal–hydrogen integrated energy system considering source–load uncertainty," Energy, Elsevier, vol. 316(C).
    2. Zhu, Xi & Zeng, Bo & Dong, Houqi & Liu, Jiaomin, 2020. "An interval-prediction based robust optimization approach for energy-hub operation scheduling considering flexible ramping products," Energy, Elsevier, vol. 194(C).
    3. Ma, Zhihao & Jiang, Gang & Hu, Yuqing & Chen, Jianli, 2025. "A review of physics-informed machine learning for building energy modeling," Applied Energy, Elsevier, vol. 381(C).
    4. Limouni, Tariq & Yaagoubi, Reda & Bouziane, Khalid & Guissi, Khalid & Baali, El Houssain, 2023. "Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model," Renewable Energy, Elsevier, vol. 205(C), pages 1010-1024.
    5. Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).
    6. Li, Yang & Han, Meng & Shahidehpour, Mohammad & Li, Jiazheng & Long, Chao, 2023. "Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response," Applied Energy, Elsevier, vol. 335(C).
    7. Dimitra G. Kyriakou & Fotios D. Kanellos & George J. Tsekouras & Konstantinos A. Moungos, 2025. "Effective and Local Constraint-Aware Load Shifting for Microgrid-Based Energy Communities," Energies, MDPI, vol. 18(2), pages 1-24, January.
    8. Habib, Salman & El-Ferik, Sami & Gulzar, Muhammad Majid & Chauhdary, Sohaib Tahir & Ahmad, Hasnain & Ahmed, Emad M., 2025. "Optimizing integrated energy systems with a robust MISOCP model and C&CG algorithm for enhanced grid efficiency and profitability," Energy, Elsevier, vol. 318(C).
    9. Yueyang Xu & Yibo Wang & Chuang Liu & Jian Xiong & Mo Zhou & Yang Du, 2025. "Adaptive Robust Optimal Scheduling of Combined Heat and Power Microgrids Based on Photovoltaic Mechanism/Data Fusion-Driven Power Prediction," Energies, MDPI, vol. 18(3), pages 1-23, February.
    10. Fan, Wei & Ju, Liwei & Tan, Zhongfu & Li, Xiangguang & Zhang, Amin & Li, Xudong & Wang, Yueping, 2023. "Two-stage distributionally robust optimization model of integrated energy system group considering energy sharing and carbon transfer," Applied Energy, Elsevier, vol. 331(C).
    11. Kohút, Roman & Klaučo, Martin & Kvasnica, Michal, 2025. "Unified carbon emissions and market prices forecasts of the power grid," Applied Energy, Elsevier, vol. 377(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiangjiang & Zhao, Lei & Lu, Hao & Wei, Changqi, 2024. "Multi-objective stochastic-robust based selection-allocation-operation cooperative optimization of rural integrated energy systems considering supply-demand multiple uncertainties," Renewable Energy, Elsevier, vol. 233(C).
    2. Ma, Miaomiao & Long, Zijuan & Liu, Xiangjie & Lee, Kwang Y., 2025. "Distributionally robust optimization of electric–thermal–hydrogen integrated energy system considering source–load uncertainty," Energy, Elsevier, vol. 316(C).
    3. Gao, Yuan & Tahir, Mustafa & Siano, Pierluigi & Bi, Yue & Hu, Sile & Yang, Jiaqiang, 2025. "Optimization of renewable energy-based integrated energy systems: A three-stage stochastic robust model," Applied Energy, Elsevier, vol. 377(PD).
    4. Fan, Wei & Fan, Ying & Yao, Xing & Yi, Bowen & Jiang, Dalin & Wu, Lin, 2024. "Distributed transaction optimization model of multi-integrated energy systems based on nash negotiation," Renewable Energy, Elsevier, vol. 225(C).
    5. Chen, Yunxiao & Lin, Chaojing & Zhang, Yilan & Liu, Jinfu & Yu, Daren, 2024. "The balance issue of the proportion between new energy and traditional thermal power: An important issue under today's low-carbon goal in developing countries," Renewable Energy, Elsevier, vol. 231(C).
    6. He, Jiaming & Tan, Qinliang & Lv, Hanyu, 2025. "Data-driven climate resilience assessment for distributed energy systems using diffusion transformer and polynomial expansions," Applied Energy, Elsevier, vol. 380(C).
    7. Jiyong Li & Zeyi Hua & Lin Tian & Peiwen Chen & Hao Dong, 2024. "Optimal Capacity Allocation for Life Cycle Multiobjective Integrated Energy Systems Considering Capacity Tariffs and Eco-Indicator 99," Sustainability, MDPI, vol. 16(20), pages 1-22, October.
    8. Li, Weiwei & Qian, Tong & Zhao, Wei & Huang, Wenwei & Zhang, Yin & Xie, Xuehua & Tang, Wenhu, 2023. "Decentralized optimization for integrated electricity–heat systems with data center based energy hub considering communication packet loss," Applied Energy, Elsevier, vol. 350(C).
    9. Kang, Kai & Su, Yifan & Yang, Peng & Wang, Zhaojian & Liu, Feng, 2025. "Securing long-term dispatch of isolated microgrids with high-penetration renewable generation: A controlled evolution-based framework," Applied Energy, Elsevier, vol. 381(C).
    10. Cosgrove, Paul & Roulstone, Tony & Zachary, Stan, 2023. "Intermittency and periodicity in net-zero renewable energy systems with storage," Renewable Energy, Elsevier, vol. 212(C), pages 299-307.
    11. Ajith, Meenu & Martínez-Ramón, Manel, 2023. "Deep learning algorithms for very short term solar irradiance forecasting: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    12. Xie, Xuehua & Qian, Tong & Li, Weiwei & Tang, Wenhu & Xu, Zhao, 2024. "An individualized adaptive distributed approach for fast energy-carbon coordination in transactive multi-community integrated energy systems considering power transformer loading capacity," Applied Energy, Elsevier, vol. 375(C).
    13. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).
    14. Wang, Jujie & Jiang, Weiyi & Shu, Shuqin & He, Xuecheng, 2025. "A multi-factor clustering integration paradigm for wind speed point-interval prediction based on feature selection and optimized inverted transformer," Energy, Elsevier, vol. 320(C).
    15. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    16. Xiangming Wu & Nan Song & Jifeng Liang & Ye Lv & Zitian Wang & Lijun Yang, 2024. "High-percentage new energy distribution network line loss frequency division prediction based on wavelet transform and BIGRU-LSTM," PLOS ONE, Public Library of Science, vol. 19(8), pages 1-22, August.
    17. Keyong Hu & Qingqing Yang & Lei Lu & Yu Zhang & Shuifa Sun & Ben Wang, 2025. "Two-Stage Distributionally Robust Optimal Scheduling for Integrated Energy Systems Considering Uncertainties in Renewable Generation and Loads," Mathematics, MDPI, vol. 13(9), pages 1-30, April.
    18. Jiahui Wang & Mingsheng Jia & Shishi Li & Kang Chen & Cheng Zhang & Xiuyu Song & Qianxi Zhang, 2024. "Short-Term Power-Generation Prediction of High Humidity Island Photovoltaic Power Station Based on a Deep Hybrid Model," Sustainability, MDPI, vol. 16(7), pages 1-24, March.
    19. Duan, Tianyao & Guo, Huan & Qi, Xiao & Sun, Ming & Forrest, Jeffrey, 2024. "A novel information enhanced Grey Lotka–Volterra model driven by system mechanism and data for energy forecasting of WEET project in China," Energy, Elsevier, vol. 304(C).
    20. Habib, Salman, 2025. "A diverse framework for optimization and techno-economic evaluation of PV Mini-grids for sustainable future of agricultural irrigation," Applied Energy, Elsevier, vol. 389(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3111-:d:1677834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.