IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v350y2023ics0306261923009509.html
   My bibliography  Save this article

Decentralized optimization for integrated electricity–heat systems with data center based energy hub considering communication packet loss

Author

Listed:
  • Li, Weiwei
  • Qian, Tong
  • Zhao, Wei
  • Huang, Wenwei
  • Zhang, Yin
  • Xie, Xuehua
  • Tang, Wenhu

Abstract

Recently, waste heat recovery has enabled data centers to serve as energy prosumers with flexible features that play essential roles in the coordination operation of integrated electricity–heat systems (IEHSs). The energy hub, as a critical component of IEHSs, provides a promising opportunity to improve energy efficiency. In this paper, the decentralized coordination optimization for IEHSs with data centers is explored to protect the confidential information of different entities. First, a novel data center based energy hub (DCEH) model is developed, where energy conversion, consumption and storage present high flexibility. Especially, in addition to heat recovery, several other controllable operational characteristics of a single data center are considered, involving servers, workloads and indoor temperature. Then, the coordination optimization model of IEHSs with DCEH (IEHSs-DCEH) is constructed by incorporating energy consumption cost and carbon emission, where the energy networks of IEHSs are considered. Moreover, a learning-aided relaxed alternating direction method of multipliers (LR-ADMM) algorithm is proposed to solve the dispatching model of IEHSs-DCEH considering communication packet loss. The proposed LR-ADMM algorithm embeds a momentum extrapolation based prediction technique, which can obtain the predicted value of missing boundary information without adding computational burden, even in continuous packet losses. Simulation results demonstrate that the developed coordination dispatching model can achieve higher economic and environmental benefits than the reference one that ignores data centers’ flexibility. Additionally, the proposed LR-ADMM algorithm with proper prediction factors exhibits a faster convergence rate and robustness hedging against packet losses compared to the ADMM and relaxed ADMM approaches.

Suggested Citation

  • Li, Weiwei & Qian, Tong & Zhao, Wei & Huang, Wenwei & Zhang, Yin & Xie, Xuehua & Tang, Wenhu, 2023. "Decentralized optimization for integrated electricity–heat systems with data center based energy hub considering communication packet loss," Applied Energy, Elsevier, vol. 350(C).
  • Handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923009509
    DOI: 10.1016/j.apenergy.2023.121586
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923009509
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Qionghai & Shao, Shuangquan & Zhang, Hainan & Tian, Changqing, 2019. "Development and composition of a data center heat recovery system and evaluation of annual operation performance," Energy, Elsevier, vol. 189(C).
    2. Liu, Xuezhi & Wu, Jianzhong & Jenkins, Nick & Bagdanavicius, Audrius, 2016. "Combined analysis of electricity and heat networks," Applied Energy, Elsevier, vol. 162(C), pages 1238-1250.
    3. Wahlroos, Mikko & Pärssinen, Matti & Manner, Jukka & Syri, Sanna, 2017. "Utilizing data center waste heat in district heating – Impacts on energy efficiency and prospects for low-temperature district heating networks," Energy, Elsevier, vol. 140(P1), pages 1228-1238.
    4. Zhong, Xiaoqing & Zhong, Weifeng & Liu, Yi & Yang, Chao & Xie, Shengli, 2023. "A communication-efficient coalition graph game-based framework for electricity and carbon trading in networked energy hubs," Applied Energy, Elsevier, vol. 329(C).
    5. Li, Weiwei & Qian, Tong & Zhang, Yin & Shen, Yueqing & Wu, Chenghu & Tang, Wenhu, 2023. "Distributionally robust chance-constrained planning for regional integrated electricity–heat systems with data centers considering wind power uncertainty," Applied Energy, Elsevier, vol. 336(C).
    6. Zhang, Tong & Li, Zhigang & Wu, Q.H. & Zhou, Xiaoxin, 2019. "Decentralized state estimation of combined heat and power systems using the asynchronous alternating direction method of multipliers," Applied Energy, Elsevier, vol. 248(C), pages 600-613.
    7. Qian, Tong & Chen, Xingyu & Xin, Yanli & Tang, Wenhu & Wang, Lixiao, 2022. "Resilient decentralized optimization of chance constrained electricity-gas systems over lossy communication networks," Energy, Elsevier, vol. 239(PB).
    8. Skalyga, Mikhail & Amelin, Mikael & Wu, Qiuwei & Söder, Lennart, 2023. "Distributionally robust day-ahead combined heat and power plants scheduling with Wasserstein Metric," Energy, Elsevier, vol. 269(C).
    9. Fan, Wei & Ju, Liwei & Tan, Zhongfu & Li, Xiangguang & Zhang, Amin & Li, Xudong & Wang, Yueping, 2023. "Two-stage distributionally robust optimization model of integrated energy system group considering energy sharing and carbon transfer," Applied Energy, Elsevier, vol. 331(C).
    10. Najafi, Arsalan & Homaee, Omid & Jasiński, Michał & Pourakbari-Kasmaei, Mahdi & Lehtonen, Matti & Leonowicz, Zbigniew, 2023. "Participation of hydrogen-rich energy hubs in day-ahead and regulation markets: A hybrid stochastic-robust model," Applied Energy, Elsevier, vol. 339(C).
    11. Zheng, J.H. & Xiao, Wenting & Wu, C.Q. & Li, Zhigang & Wang, L.X. & Wu, Q.H., 2023. "A gradient descent direction based-cumulants method for probabilistic energy flow analysis of individual-based integrated energy systems," Energy, Elsevier, vol. 265(C).
    12. Han, Ouzhu & Ding, Tao & Mu, Chenggang & Jia, Wenhao & Ma, Zhoujun, 2023. "Waste heat reutilization and integrated demand response for decentralized optimization of data centers," Energy, Elsevier, vol. 264(C).
    13. Maurer, Jona & Tschuch, Nicolai & Krebs, Stefan & Bhattacharya, Kankar & Cañizares, Claudio & Hohmann, Sören, 2023. "Toward transactive control of coupled electric power and district heating networks," Applied Energy, Elsevier, vol. 332(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Suhan & Gu, Wei & Qiu, Haifeng & Yao, Shuai & Pan, Guangsheng & Chen, Xiaogang, 2021. "State estimation models of district heating networks for integrated energy system considering incomplete measurements," Applied Energy, Elsevier, vol. 282(PA).
    2. Ding, Shixing & Gu, Wei & Lu, Shuai & Yu, Ruizhi & Sheng, Lina, 2022. "Cyber-attack against heating system in integrated energy systems: Model and propagation mechanism," Applied Energy, Elsevier, vol. 311(C).
    3. Yuan, Xiaolei & Liang, Yumin & Hu, Xinyi & Xu, Yizhe & Chen, Yongbao & Kosonen, Risto, 2023. "Waste heat recoveries in data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Li, Weiwei & Qian, Tong & Zhang, Yin & Shen, Yueqing & Wu, Chenghu & Tang, Wenhu, 2023. "Distributionally robust chance-constrained planning for regional integrated electricity–heat systems with data centers considering wind power uncertainty," Applied Energy, Elsevier, vol. 336(C).
    5. Chun Wang & Minghao Geng & Qingshan Xu & Haixiang Zang, 2020. "A Fast State Estimator for Integrated Electrical and Heating Networks," Energies, MDPI, vol. 13(17), pages 1-13, August.
    6. Luo, Xi & Liu, Yanfeng & Feng, Pingan & Gao, Yuan & Guo, Zhenxiang, 2021. "Optimization of a solar-based integrated energy system considering interaction between generation, network, and demand side," Applied Energy, Elsevier, vol. 294(C).
    7. Kate Doubleday & Faeza Hafiz & Andrew Parker & Tarek Elgindy & Anthony Florita & Gregor Henze & Graziano Salvalai & Shanti Pless & Bri‐Mathias Hodge, 2019. "Integrated distribution system and urban district planning with high renewable penetrations," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    8. Qiu, Haifeng & Vinod, Ashwin & Lu, Shuai & Gooi, Hoay Beng & Pan, Guangsheng & Zhang, Suhan & Veerasamy, Veerapandiyan, 2023. "Decentralized mixed-integer optimization for robust integrated electricity and heat scheduling," Applied Energy, Elsevier, vol. 350(C).
    9. Bott, Andreas & Janke, Tim & Steinke, Florian, 2023. "Deep learning-enabled MCMC for probabilistic state estimation in district heating grids," Applied Energy, Elsevier, vol. 336(C).
    10. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    11. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    12. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    13. Putna, Ondřej & Janošťák, František & Šomplák, Radovan & Pavlas, Martin, 2018. "Demand modelling in district heating systems within the conceptual design of a waste-to-energy plant," Energy, Elsevier, vol. 163(C), pages 1125-1139.
    14. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Xiong, Wen & Wang, Li, 2017. "Typical scenario set generation algorithm for an integrated energy system based on the Wasserstein distance metric," Energy, Elsevier, vol. 135(C), pages 153-170.
    15. Chunyi Wang & Fengzhang Luo & Zheng Jiao & Xiaolei Zhang & Zhipeng Lu & Yanshuo Wang & Ren Zhao & Yang Yang, 2022. "An Enhanced Second-Order Cone Programming-Based Evaluation Method on Maximum Hosting Capacity of Solar Energy in Distribution Systems with Integrated Energy," Energies, MDPI, vol. 15(23), pages 1-19, November.
    16. Huang, Manyun & Wei, Zhinong & Lin, Yuzhang, 2022. "Forecasting-aided state estimation based on deep learning for hybrid AC/DC distribution systems," Applied Energy, Elsevier, vol. 306(PB).
    17. Rämä, Miika & Wahlroos, Mikko, 2018. "Introduction of new decentralised renewable heat supply in an existing district heating system," Energy, Elsevier, vol. 154(C), pages 68-79.
    18. Wang, Lixiao & Jing, Z.X. & Zheng, J.H. & Wu, Q.H. & Wei, Feng, 2018. "Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals," Energy, Elsevier, vol. 158(C), pages 607-622.
    19. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    20. Johan Simonsson & Khalid Tourkey Atta & Gerald Schweiger & Wolfgang Birk, 2021. "Experiences from City-Scale Simulation of Thermal Grids," Resources, MDPI, vol. 10(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923009509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.