IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225003032.html
   My bibliography  Save this article

Efficient training of learning-based thermal power flow for 4th generation district heating grids

Author

Listed:
  • Bott, Andreas
  • Beykirch, Mario
  • Steinke, Florian

Abstract

Computing the thermal power flow, i.e., determining the grid state consisting of temperatures, pressures, and mass flow rates for given heat flows of consumers and suppliers, is an important element of various applications in district heating grids. It is classically done by solving the nonlinear heat grid equations iteratively but can be sped up by orders of magnitude using learned surrogate models such as neural networks. In this paper, we propose to speed up the model-building process for such learned models via a novel scheme for generating a suitable training data set. By sampling exemplary consumer or supplier mass flow rates instead of their heat flows, we avoid the iterative solution process during training data generation. We show with simulations for test settings with typical features of 4th generation district heating grids, such as multiple decentral heat sources and meshed grid structures, that the new approach can reduce training set generation times by one to two orders of magnitude compared to sampling heat flows, without loss of relevance of the training data set. Moreover, we show that training a surrogate model with a training data set significantly outperforms sample-free, physics-aware training approaches.

Suggested Citation

  • Bott, Andreas & Beykirch, Mario & Steinke, Florian, 2025. "Efficient training of learning-based thermal power flow for 4th generation district heating grids," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225003032
    DOI: 10.1016/j.energy.2025.134661
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225003032
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134661?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Marius Reich & Jonas Gottschald & Philipp Riegebauer & Mario Adam, 2020. "Predictive Control of District Heating System Using Multi-Stage Nonlinear Approximation with Selective Memory," Energies, MDPI, vol. 13(24), pages 1-25, December.
    2. Liu, Xuezhi & Wu, Jianzhong & Jenkins, Nick & Bagdanavicius, Audrius, 2016. "Combined analysis of electricity and heat networks," Applied Energy, Elsevier, vol. 162(C), pages 1238-1250.
    3. Ioan Sarbu, 2014. "Nodal Analysis of Urban Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3143-3159, August.
    4. Bott, Andreas & Janke, Tim & Steinke, Florian, 2023. "Deep learning-enabled MCMC for probabilistic state estimation in district heating grids," Applied Energy, Elsevier, vol. 336(C).
    5. Zhang, Tong & Li, Zhigang & Wu, Q.H. & Zhou, Xiaoxin, 2019. "Decentralized state estimation of combined heat and power systems using the asynchronous alternating direction method of multipliers," Applied Energy, Elsevier, vol. 248(C), pages 600-613.
    6. Runge, Jason & Saloux, Etienne, 2023. "A comparison of prediction and forecasting artificial intelligence models to estimate the future energy demand in a district heating system," Energy, Elsevier, vol. 269(C).
    7. Guoqiang Sun & Wenxue Wang & Yi Wu & Wei Hu & Zijun Yang & Zhinong Wei & Haixiang Zang & Sheng Chen, 2019. "A Nonlinear Analytical Algorithm for Predicting the Probabilistic Mass Flow of a Radial District Heating Network," Energies, MDPI, vol. 12(7), pages 1-20, March.
    8. Li, Xue & Li, Wenming & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Li, Guoqing, 2020. "Collaborative scheduling and flexibility assessment of integrated electricity and district heating systems utilizing thermal inertia of district heating network and aggregated buildings," Applied Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bott, Andreas & Janke, Tim & Steinke, Florian, 2023. "Deep learning-enabled MCMC for probabilistic state estimation in district heating grids," Applied Energy, Elsevier, vol. 336(C).
    2. Li, Weiwei & Qian, Tong & Zhao, Wei & Huang, Wenwei & Zhang, Yin & Xie, Xuehua & Tang, Wenhu, 2023. "Decentralized optimization for integrated electricity–heat systems with data center based energy hub considering communication packet loss," Applied Energy, Elsevier, vol. 350(C).
    3. Zhang, Suhan & Gu, Wei & Qiu, Haifeng & Yao, Shuai & Pan, Guangsheng & Chen, Xiaogang, 2021. "State estimation models of district heating networks for integrated energy system considering incomplete measurements," Applied Energy, Elsevier, vol. 282(PA).
    4. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Hu, Songtao & Wang, Jinda, 2021. "Effects of intermittent heating on an integrated heat and power dispatch system for wind power integration and corresponding operation regulation," Applied Energy, Elsevier, vol. 287(C).
    5. Chen, Dongwen & Li, Yong & Abbas, Zulkarnain & Li, Dehong & Wang, Ruzhu, 2022. "Network flow calculation based on the directional nodal potential method for meshed heating networks," Energy, Elsevier, vol. 243(C).
    6. Guangdi Li & Qi Tang & Bo Hu & Min Ma, 2022. "Optimal Scheduling of Thermoelectric Coupling Energy System Considering Thermal Characteristics of DHN," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    7. He, Ke-Lun & Zhao, Tian & Ma, Huan & Chen, Qun, 2023. "Optimal operation of integrated power and thermal systems for flexibility improvement based on evaluation and utilization of heat storage in district heating systems," Energy, Elsevier, vol. 274(C).
    8. Chun Wang & Minghao Geng & Qingshan Xu & Haixiang Zang, 2020. "A Fast State Estimator for Integrated Electrical and Heating Networks," Energies, MDPI, vol. 13(17), pages 1-13, August.
    9. Chen, Jing & Li, Fan & Li, Haoran & Sun, Bo & Zhang, Chenghui & Liu, Shuai, 2023. "Novel dynamic equivalent circuit model of integrated energy systems," Energy, Elsevier, vol. 262(PA).
    10. Yang, Miao & Ding, Tao & Chang, Xinyue & Xue, Yixun & Ge, Huaichang & Jia, Wenhao & Du, Sijun & Zhang, Hongji, 2024. "Analysis of equivalent energy storage for integrated electricity-heat system," Energy, Elsevier, vol. 303(C).
    11. Frölke, Linde & Sousa, Tiago & Pinson, Pierre, 2022. "A network-aware market mechanism for decentralized district heating systems," Applied Energy, Elsevier, vol. 306(PA).
    12. Ding, Shixing & Gu, Wei & Lu, Shuai & Yu, Ruizhi & Sheng, Lina, 2022. "Cyber-attack against heating system in integrated energy systems: Model and propagation mechanism," Applied Energy, Elsevier, vol. 311(C).
    13. Chen, Dongwen & Hu, Xiao & Li, Yong & Abbas, Zulkarnain & Wang, Ruzhu & Li, Dehong, 2023. "Nodal conservation principle of potential energy flow analysis for energy flow calculation in energy internet," Energy, Elsevier, vol. 263(PA).
    14. Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "District heating load patterns and short-term forecasting for buildings and city level," Energy, Elsevier, vol. 289(C).
    15. Luo, Xi & Liu, Yanfeng & Feng, Pingan & Gao, Yuan & Guo, Zhenxiang, 2021. "Optimization of a solar-based integrated energy system considering interaction between generation, network, and demand side," Applied Energy, Elsevier, vol. 294(C).
    16. Aidong Zeng & Jiawei Wang & Yaheng Wan, 2023. "Coordinated Optimal Dispatch of Electricity and Heat Integrated Energy Systems Based on Fictitious Node Method," Energies, MDPI, vol. 16(18), pages 1-24, September.
    17. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    18. Wang, Lixiao & Jing, Z.X. & Zheng, J.H. & Wu, Q.H. & Wei, Feng, 2018. "Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals," Energy, Elsevier, vol. 158(C), pages 607-622.
    19. Zhou, Yizhou & Li, Xiang & Han, Haiteng & Wei, Zhinong & Zang, Haixiang & Sun, Guoqiang & Chen, Sheng, 2024. "Resilience-oriented planning of integrated electricity and heat systems: A stochastic distributionally robust optimization approach," Applied Energy, Elsevier, vol. 353(PA).
    20. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225003032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.