IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124006360.html
   My bibliography  Save this article

Comprehensive investigation of almond shells pyrolysis using advance predictive models

Author

Listed:
  • Khan, Arslan
  • Saeed, Saad
  • Pervaiz, Erum
  • Khoja, Asif Hussain
  • Naqvi, Salman Raza
  • Saeed, Sana
  • Ali, Imtiaz

Abstract

This research focused on comprehensive characterization and assessment of almond shells pyrolysis for bioenergy potential through thermogravimetric analysis from ambient temperature to 900 °C at different heating rates of 10, 15, and 20 °C/min in inert environment. Iso-conversional model-free methods like Friedman, Ozawa-Flynn-Wall (OFW), and Kissinger-Akahira-Sunose (KAS) were used for kinetic analysis. Average activation energies (Ea) evaluated using Friedman, OFW, and KAS methods were 198.45 kJ mol−1, 204.43 kJ mol−1, and 204.97 kJ mol−1, respectively. The evaluation of thermodynamic parameters, including ΔH‡, ΔG‡, and ΔS‡, was also assessed. The average values of ΔH‡, ΔG‡, and ΔS‡, were found to be 199.4 kJ mol−1, 172.17 kJ mol−1 and 42.60 kJ mol−1 respectively. The reaction mechanism was obtained from combined kinetics. A high R2 value of 0.9933 demonstrates strong agreement between the combined kinetic analysis results and the experimental data. The distribution activation energy model was assessed employing four pseudo elements identified as PC1, PC2, PC3, and PC4. Artificial Neural Network (ANN) and Boosting regression trees (BRT) were used for the prediction of Ea of almond shells pyrolysis. The detailed understanding of thermokinetics and creating customized predictive and innovative modelling techniques like ANN and BRT sets a new benchmark for developing customized models for thermochemical conversion of varieties of almond shells.

Suggested Citation

  • Khan, Arslan & Saeed, Saad & Pervaiz, Erum & Khoja, Asif Hussain & Naqvi, Salman Raza & Saeed, Sana & Ali, Imtiaz, 2024. "Comprehensive investigation of almond shells pyrolysis using advance predictive models," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006360
    DOI: 10.1016/j.renene.2024.120568
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124006360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.