IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v238y2025ics0960148124020408.html
   My bibliography  Save this article

Pyrolysis characteristics of Camellia oleifera seeds residue in different heating regimes: Products, kinetics, and mechanism

Author

Listed:
  • Cui, Baihui
  • Rong, Hongwei
  • Luo, Shiyi
  • Chen, Zhihua
  • Hu, Mian
  • Yan, Wangwang
  • He, Penghong
  • Guo, Dabin

Abstract

The mechanisms, kinetics, and product evaluations of Camellia oleifera seeds residue (COSR) pyrolysis were studied using TGA-FTIR-MS, Py-GC/MS, and a fixed-bed reactor. The pyrolysis process could be divided into primary devolatilization (PDVL) and biochar refractory (BCRF) stages with low and high activation energies, respectively. The gases of CO2, H2, CH4, and H2O(g) were generated in the overall process of pyrolysis. The increase in pyrolysis temperature led to cracking of bio-oil components, especially the fatty acids (FA) and reduced bio-oil yield. The highest bio-oil yield (47.81 wt%) was obtained at 773 K. The biochar refractory stage was characterized by slow depolymerization, dehydrogenation, and deoxygenation reactions to generate more aromatic, alkynes containing compounds, and groups of -CH3, -CH2-, and -CH-. Due to the low reactivity in the biochar refractory stage, the reaction-order of pyrolysis was high (n = 5.2) when kinetic was studied by single-step reaction. In the independent pyrolysis of components model, decompositions of the 1st and 2nd components occurred in the primary devolatilization stage. Whereas, the decomposition of 3rd component corresponded to BCRF stage with similar reaction-order (n = 4.74–5.83) of model-free procedure.

Suggested Citation

  • Cui, Baihui & Rong, Hongwei & Luo, Shiyi & Chen, Zhihua & Hu, Mian & Yan, Wangwang & He, Penghong & Guo, Dabin, 2025. "Pyrolysis characteristics of Camellia oleifera seeds residue in different heating regimes: Products, kinetics, and mechanism," Renewable Energy, Elsevier, vol. 238(C).
  • Handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124020408
    DOI: 10.1016/j.renene.2024.121972
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124020408
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    2. Zalazar-Garcia, Daniela & Fernandez, Anabel & Rodriguez-Ortiz, Leandro & Torres, Erick & Reyes-Urrutia, Andrés & Echegaray, Marcelo & Rodriguez, Rosa & Mazza, Germán, 2022. "Exergo-ecological analysis and life cycle assessment of agro-wastes using a combined simulation approach based on Cape-Open to Cape-Open (COCO) and SimaPro free-software," Renewable Energy, Elsevier, vol. 201(P1), pages 60-71.
    3. Liu, Shanjian & Zhao, An & He, Zhisen & Li, Yongjun & Bi, Dongmei & Gao, Xin, 2022. "Effects of temperature and urea concentration on nitrogen-rich pyrolysis: Pyrolysis behavior and product distribution in bio-oil," Energy, Elsevier, vol. 239(PE).
    4. Nasir Uddin, Md. & Daud, W.M.A. Wan & Abbas, Hazim F., 2013. "Potential hydrogen and non-condensable gases production from biomass pyrolysis: Insights into the process variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 204-224.
    5. Zhang, Xin & Deng, Honghu & Hou, Xueyi & Qiu, Rongliang & Chen, Zhihua, 2019. "Pyrolytic behavior and kinetic of wood sawdust at isothermal and non-isothermal conditions," Renewable Energy, Elsevier, vol. 142(C), pages 284-294.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi Xu & Zhaohui Guo & Huimin Xie & Yulian Hu, 2022. "Effect of Cd on Pyrolysis Velocity and Deoxygenation Characteristics of Rice Straw: Analogized with Cd-Impregnated Representative Biomass Components," IJERPH, MDPI, vol. 19(15), pages 1-18, July.
    2. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    3. Brillard, A. & Brilhac, J.F., 2020. "Improvements of global models for the determination of the kinetic parameters associated to the thermal degradation of lignocellulosic materials under low heating rates," Renewable Energy, Elsevier, vol. 146(C), pages 1498-1509.
    4. Lazaroiu, Gheorghe & Pop, Elena & Negreanu, Gabriel & Pisa, Ionel & Mihaescu, Lucian & Bondrea, Andreya & Berbece, Viorel, 2017. "Biomass combustion with hydrogen injection for energy applications," Energy, Elsevier, vol. 127(C), pages 351-357.
    5. Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.
    6. Park, Chanyeong & Choi, Heeyoung & Andrew Lin, Kun-Yi & Kwon, Eilhann E. & Lee, Jechan, 2021. "COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste," Energy, Elsevier, vol. 230(C).
    7. Liu, Shanjian & Zhang, Guanshuai & Bi, Dongmei & Ni, Yu & Song, Jie & Song, Xiaoyu & Wang, Hui, 2025. "Effect of pyrolysis conditions on the preparation of nitrogen-containing chemicals and nitrogen-doped carbon from cock feathers: Nitrogen migration and transformation," Energy, Elsevier, vol. 315(C).
    8. Vikraman, V. Karuppasamy & Boopathi, G. & Kumar, D. Praveen & Mythili, R. & Subramanian, P., 2021. "Non-isothermal pyrolytic kinetics of milk dust powder using thermogravimetric analysis," Renewable Energy, Elsevier, vol. 180(C), pages 838-849.
    9. Dai, Ying & Sun, Meng & Fang, Hua & Yao, Huicong & Chen, Jianbiao & Tan, Jinzhu & Mu, Lin & Zhu, Yuezhao, 2024. "Co-combustion of binary and ternary blends of industrial sludge, lignite and pine sawdust via thermogravimetric analysis: Thermal behaviors, interaction effects, kinetics evaluation, and artificial ne," Renewable Energy, Elsevier, vol. 220(C).
    10. Jia, Yongsheng & Wang, Yingjie & Zhang, Qi & Rong, Hongwei & Liu, Yuhuan & Xiao, Bo & Guo, Dabin & Laghari, Mahmood & Ruan, Roger, 2022. "Gas-carrying enhances the combustion temperature of the biomass particles," Energy, Elsevier, vol. 239(PA).
    11. Khan, Arslan & Saeed, Saad & Pervaiz, Erum & Khoja, Asif Hussain & Naqvi, Salman Raza & Saeed, Sana & Ali, Imtiaz, 2024. "Comprehensive investigation of almond shells pyrolysis using advance predictive models," Renewable Energy, Elsevier, vol. 227(C).
    12. Wang, Hui & Bi, Dongmei & He, Zhisen & Yi, Weiming & Liu, Shanjian & Yao, Jingang & Zhang, Guanshuai, 2025. "Machine learning-based stacked ensemble model for predicting and regulating oxygen-containing compounds in nitrogen-rich pyrolysis bio-oil," Renewable Energy, Elsevier, vol. 241(C).
    13. Wądrzyk, Mariusz & Grzywacz, Przemysław & Janus, Rafał & Michalik, Marek, 2021. "A two-stage processing of cherry pomace via hydrothermal treatment followed by biochar gasification," Renewable Energy, Elsevier, vol. 179(C), pages 248-261.
    14. Gan, Xiaowei & Chen, Zhengjie & Ma, Wenhui & Luo, Pen & Xie, Rui, 2024. "Comprehensive evaluation of the physicochemical properties and pyrolysis mechanism of products from the slow pyrolysis of waste coffee shells," Renewable Energy, Elsevier, vol. 237(PB).
    15. Chen, Fanbao & Kong, Depeng & Zhu, Guoqing & Sharma, Rajnish N., 2025. "Methods for predicting and implementing continuous pyrolysis rate and heat release rate of Finnish pine," Energy, Elsevier, vol. 319(C).
    16. Đurišić-Mladenović, Nataša & Škrbić, Biljana D. & Zabaniotou, Anastasia, 2016. "Chemometric interpretation of different biomass gasification processes based on the syngas quality: Assessment of crude glycerol co-gasification with lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 649-661.
    17. Collard, François-Xavier & Blin, Joël, 2014. "A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 594-608.
    18. Wądrzyk, Mariusz & Janus, Rafał & Lewandowski, Marek & Magdziarz, Aneta, 2021. "On mechanism of lignin decomposition – Investigation using microscale techniques: Py-GC-MS, Py-FT-IR and TGA," Renewable Energy, Elsevier, vol. 177(C), pages 942-952.
    19. Zhang, Pin & Li, Chong & Xu, Dong & Yellezuome, Dominic & Wang, Jiong & Cai, Junmeng, 2023. "Insight into kinetics and thermodynamics of distillers’ dried grains with solubles (DDGS) combustion using an approach simultaneously determining frequency factor and reaction model," Renewable Energy, Elsevier, vol. 219(P2).
    20. Ashik, U.P.M. & Wan Daud, W.M.A. & Abbas, Hazzim F., 2015. "Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 221-256.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124020408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.