IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics0960148124002015.html
   My bibliography  Save this article

Analysis of NREL-5MW wind turbine wake under varied incoming turbulence conditions

Author

Listed:
  • Liu, Songyue
  • Li, Qiusheng
  • Lu, Bin
  • He, Junyi

Abstract

The offshore environment is an ideal site for wind farm development as it offers abundant wind energy resources. Investigating offshore wind turbine wake under different turbulence conditions is essential for enhancing energy generation efficiency and promoting sustainable development. This paper utilizes a synthetic turbulence method called Discretizing and Synthesizing Random Flow Generation (DSRFG) to generate four categories of turbulence environments based on International Electrotechnical Commission design requirements for offshore wind turbines. A standalone NREL offshore 5-MW baseline wind turbine is then simulated using the actuator line method coupled with large eddy simulation. Proper Orthogonal Decomposition is employed to analyze the wake characteristics under different incoming turbulence conditions. For the overall wake behaviors, the flow mode, in which some tip vortices flow back towards the hub, become more significant with higher incoming turbulence intensity. Those vortices disturb the turbine and result in unfavorable effects. Meanwhile, when the detailed characteristics of the wake are studied, each primary mode experiences an increase in the number of small-scale vortices with higher incoming turbulence intensity. It results from the interaction between the wake and outer flow, which accelerates wake recovery and benefits the downstream turbine.

Suggested Citation

  • Liu, Songyue & Li, Qiusheng & Lu, Bin & He, Junyi, 2024. "Analysis of NREL-5MW wind turbine wake under varied incoming turbulence conditions," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002015
    DOI: 10.1016/j.renene.2024.120136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124002015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.