IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148124000211.html
   My bibliography  Save this article

Dual-function flapping hydrofoil: Energy capture and propulsion in ocean waves

Author

Listed:
  • Zhang, Yongkuang
  • Han, Xinyang
  • Hu, Yuxuan
  • Chen, Xihan
  • Li, Zhuohang
  • Gao, Feng
  • Chen, Weixing

Abstract

Bionic flapping hydrofoils can be utilized for either energy extraction or propulsion, which has attracted the interest of many researchers. This paper proposes a semi-active flapping hydrofoil device connected to a spring damper power takeoff (PTO) that can simultaneously capture wave energy and propel under ocean wave excitation. The effects of various PTO stiffnesses, PTO damping, and torsional stiffnesses on energy capture and propulsion are investigated using CFD simulation. The performance maps of power generation and propulsion are presented. Compared with the traditional semi-active flapping hydrofoil, the study discovered that the proposed dual-function flapping hydrofoil system could achieve higher overall efficiency. With increasing PTO damping, the overall efficiency initially rises and then falls. After optimizing the PTO parameters, it is possible to increase the overall efficiency by 32 %–86 %. By adjusting the PTO damping, the proportion of energy absorbed for electricity generation and propulsion can be redistributed. Larger torsional stiffness can compensate for the reduction in energy capture and has slight influence on propulsion power. The proposed flapping hydrofoil is expected to be implemented in small wave-powered marine robots, enabling wave propulsion and wave power generation simultaneously.

Suggested Citation

  • Zhang, Yongkuang & Han, Xinyang & Hu, Yuxuan & Chen, Xihan & Li, Zhuohang & Gao, Feng & Chen, Weixing, 2024. "Dual-function flapping hydrofoil: Energy capture and propulsion in ocean waves," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148124000211
    DOI: 10.1016/j.renene.2024.119956
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124000211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.119956?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Yonghui & Lu, Kun & Zhang, Di, 2014. "Investigation on energy extraction performance of an oscillating foil with modified flapping motion," Renewable Energy, Elsevier, vol. 63(C), pages 550-557.
    2. Xing, Jingru & Yang, Liang, 2023. "Wave devouring propulsion: An overview of flapping foil propulsion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Lahooti, Mohsen & Kim, Daegyoum, 2019. "Multi-body interaction effect on the energy harvesting performance of a flapping hydrofoil," Renewable Energy, Elsevier, vol. 130(C), pages 460-473.
    4. Zhang, Yongkuang & Zhou, Yu & Chen, Weixing & Zhang, Weidong & Gao, Feng, 2022. "Design, modeling and numerical analysis of a WEC-Glider (WEG)," Renewable Energy, Elsevier, vol. 188(C), pages 911-921.
    5. Teng, Lubao & Deng, Jian & Pan, Dingyi & Shao, Xueming, 2016. "Effects of non-sinusoidal pitching motion on energy extraction performance of a semi-active flapping foil," Renewable Energy, Elsevier, vol. 85(C), pages 810-818.
    6. Wang, Wen-Quan & Li, Weizhong & Yan, Yan & Zhang, Jianmin, 2022. "Parametric study on the propulsion and energy harvesting performance of a pitching foil hanging under a wave glider," Renewable Energy, Elsevier, vol. 184(C), pages 830-844.
    7. Boudreau, Matthieu & Picard-Deland, Maxime & Dumas, Guy, 2020. "A parametric study and optimization of the fully-passive flapping-foil turbine at high Reynolds number," Renewable Energy, Elsevier, vol. 146(C), pages 1958-1975.
    8. Zhang, Yongkuang & Feng, Yongjun & Chen, Weixing & Gao, Feng, 2022. "Effect of pivot location on the semi-active flapping hydrofoil propulsion for wave glider from wave energy extraction," Energy, Elsevier, vol. 255(C).
    9. Zhang, Yongkuang & Huang, Hao & Gao, Feng & Chen, Weixing, 2023. "Cable-driven power take-off for WEC-glider: Modeling, simulation, experimental study, and application," Energy, Elsevier, vol. 282(C).
    10. Kim, Jihoon & Kim, Dong-Geon & Jung, Sejin & Moon, Seong Min & Ko, Jin Hwan, 2023. "Experimental study of a fully passive flapping hydrofoil turbine with a dual configuration and a coupling mechanism," Renewable Energy, Elsevier, vol. 208(C), pages 191-202.
    11. Zhang, Yue & Yang, Fuchun & Li, Yuetai & Qiu, Wenlei, 2021. "Design and numerical investigation of a multi-directional energy-harvesting device for UUVs," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yongkuang & Feng, Yongjun & Chen, Weixing & Gao, Feng, 2022. "Effect of pivot location on the semi-active flapping hydrofoil propulsion for wave glider from wave energy extraction," Energy, Elsevier, vol. 255(C).
    2. Li, Weizhong & Wang, Wen-Quan & Yan, Yan, 2020. "The effects of outline of the symmetrical flapping hydrofoil on energy harvesting performance," Renewable Energy, Elsevier, vol. 162(C), pages 624-638.
    3. Zhang, Yubing & Wang, Yong & Xie, Yudong & Sun, Guang & Han, Jiazhen, 2022. "Effects of flexibility on energy extraction performance of an oscillating hydrofoil under a semi-activated mode," Energy, Elsevier, vol. 242(C).
    4. Zhang, Yongkuang & Liu, Qingshu & Gao, Feng & Zhou, Songlin & Zhang, Weidong & Chen, Weixing, 2024. "Design and modeling of wave energy converter glider (WEC-Glider) with simulation validation in wave tank experiments," Applied Energy, Elsevier, vol. 364(C).
    5. Zhang, Yongkuang & Huang, Hao & Gao, Feng & Chen, Weixing, 2023. "Cable-driven power take-off for WEC-glider: Modeling, simulation, experimental study, and application," Energy, Elsevier, vol. 282(C).
    6. Ma, Penglei & Yang, Zhihong & Wang, Yong & Liu, Haibin & Xie, Yudong, 2017. "Energy extraction and hydrodynamic behavior analysis by an oscillating hydrofoil device," Renewable Energy, Elsevier, vol. 113(C), pages 648-659.
    7. Ma, Penglei & Wang, Yong & Xie, Yudong & Zhang, Jianhua, 2018. "Analysis of a hydraulic coupling system for dual oscillating foils with a parallel configuration," Energy, Elsevier, vol. 143(C), pages 273-283.
    8. Sun, Guang & Wang, Yong & Xie, Yudong & Lv, Kai & Sheng, Ruoyu, 2021. "Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil," Energy, Elsevier, vol. 225(C).
    9. Xing, Jingru & Yang, Liang, 2023. "Wave devouring propulsion: An overview of flapping foil propulsion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    10. Zhu, Bing & Huang, Yun & Zhang, Yongming, 2018. "Energy harvesting properties of a flapping wing with an adaptive Gurney flap," Energy, Elsevier, vol. 152(C), pages 119-128.
    11. Chen, Weixing & Zhou, Boen & Huang, Hao & Lu, Yunfei & Li, Shaoxun & Gao, Feng, 2022. "Design, modeling and performance analysis of a deployable WEC for ocean robots," Applied Energy, Elsevier, vol. 327(C).
    12. Liu, Zhen & Qu, Hengliang & Shi, Hongda, 2020. "Energy-harvesting performance of a coupled-pitching hydrofoil under the semi-passive mode," Applied Energy, Elsevier, vol. 267(C).
    13. Jiang, W. & Wang, Y.L. & Zhang, D. & Xie, Y.H., 2020. "Numerical investigation into the energy extraction characteristics of 3D self-induced oscillating foil," Renewable Energy, Elsevier, vol. 148(C), pages 60-71.
    14. Zhu, Jianyang & Zhu, Mingkang & Zhang, Tao & Zhao, Hui & Wang, Chao, 2021. "Improvement of the power extraction performance of a semi-active flapping airfoil by employing two-sided symmetric slot airfoil," Energy, Elsevier, vol. 227(C).
    15. Chen, Weixing & Lu, Yunfei & Li, Shaoxun & Gao, Feng, 2023. "A bio-inspired foldable-wing wave energy converter for ocean robots," Applied Energy, Elsevier, vol. 334(C).
    16. Villeneuve, Thierry & Boudreau, Matthieu & Dumas, Guy, 2021. "Assessing the performance and the wake recovery rate of flapping-foil turbines with end-plates and detached end-plates," Renewable Energy, Elsevier, vol. 179(C), pages 206-222.
    17. Deng, Jian & Wang, Shuhong & Kandel, Prabal & Teng, Lubao, 2022. "Effects of free surface on a flapping-foil based ocean current energy extractor," Renewable Energy, Elsevier, vol. 181(C), pages 933-944.
    18. Wang, LiGuo & Li, Hui & Lin, Jing & Yan, Xun & Lu, GuanYu & Wu, ShiXuan & Peng, WeiZhi, 2024. "Vibration energy harvesting from an unmanned surface vehicle: Concept design, open sea tests and harvester optimization," Renewable Energy, Elsevier, vol. 222(C).
    19. Suleiman Saleh & Chang-Hyun Sohn, 2024. "Numerically Investigating the Energy-Harvesting Performance of an Oscillating Flat Plate with Leading and Trailing Flaps," Energies, MDPI, vol. 17(12), pages 1-19, June.
    20. Li, Yanhong & Guo, Ziting & Zhao, Zhihao & Gao, Yikui & Yang, Peiyuan & Qiao, Wenyan & Zhou, Linglin & Wang, Jie & Wang, Zhong Lin, 2023. "Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting," Applied Energy, Elsevier, vol. 336(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148124000211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.