IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v242y2022ics0360544221031893.html
   My bibliography  Save this article

Effects of flexibility on energy extraction performance of an oscillating hydrofoil under a semi-activated mode

Author

Listed:
  • Zhang, Yubing
  • Wang, Yong
  • Xie, Yudong
  • Sun, Guang
  • Han, Jiazhen

Abstract

The aim of this paper is to numerically investigate the energy extraction performance of a flexible hydrofoil under the semi-activated mode. The effects of flexure amplitude (α), pitching amplitude (θ0) and reduced frequency (f∗) on power extraction were studied and compared with rigid hydrofoils. The evolution of effective angle of attack, vortex and pressure field are examined. The results show that averaged power coefficient (CP¯) and efficiency (η) of the flexible hydrofoil are better than that of rigid hydrofoils. The increase of α can obviously improve the zones of high η at 0.15 < f∗<0.25 and 50° < θ0 < 80°. Especially, increasing α could obviously improve CP¯ and η at a low θ0. Further, at a high θ0, the factors causing decline of power extraction are the separation of leading-edge vortex at low frequency and the shifting of pressure center caused by the decrease of pitching angular rate at high frequency. Compared with the rigid hydrofoil, the flexible hydrofoil can increase the pressure difference between the upper and lower surfaces of hydrofoils, thus lift is improved, which is beneficial to the improvement of energy extraction performance.

Suggested Citation

  • Zhang, Yubing & Wang, Yong & Xie, Yudong & Sun, Guang & Han, Jiazhen, 2022. "Effects of flexibility on energy extraction performance of an oscillating hydrofoil under a semi-activated mode," Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221031893
    DOI: 10.1016/j.energy.2021.122940
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221031893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122940?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.
    2. Sun, Guang & Wang, Yong & Xie, Yudong & Lv, Kai & Sheng, Ruoyu, 2021. "Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil," Energy, Elsevier, vol. 225(C).
    3. Lu, Kun & Xie, Yonghui & Zhang, Di, 2014. "Nonsinusoidal motion effects on energy extraction performance of a flapping foil," Renewable Energy, Elsevier, vol. 64(C), pages 283-293.
    4. Duarte, Leandro & Dellinger, Nicolas & Dellinger, Guilhem & Ghenaim, Abdellah & Terfous, Abdelali, 2021. "Experimental optimisation of the pitching structural parameters of a fully passive flapping foil turbine," Renewable Energy, Elsevier, vol. 171(C), pages 1436-1444.
    5. Liu, Zhen & Qu, Hengliang & Shi, Hongda, 2020. "Energy-harvesting performance of a coupled-pitching hydrofoil under the semi-passive mode," Applied Energy, Elsevier, vol. 267(C).
    6. Wu, Jie & Shen, Meng & Jiang, Lan, 2020. "Role of synthetic jet control in energy harvesting capability of a semi-active flapping airfoil," Energy, Elsevier, vol. 208(C).
    7. Ma, Penglei & Wang, Yong & Xie, Yudong & Huo, Zhipu, 2018. "Numerical analysis of a tidal current generator with dual flapping wings," Energy, Elsevier, vol. 155(C), pages 1077-1089.
    8. Xie, Yonghui & Lu, Kun & Zhang, Di, 2014. "Investigation on energy extraction performance of an oscillating foil with modified flapping motion," Renewable Energy, Elsevier, vol. 63(C), pages 550-557.
    9. Lu, Kun & Xie, Yonghui & Zhang, Di & Xie, Gongnan, 2015. "Systematic investigation of the flow evolution and energy extraction performance of a flapping-airfoil power generator," Energy, Elsevier, vol. 89(C), pages 138-147.
    10. Ma, Penglei & Wang, Yong & Xie, Yudong & Zhang, Jianhua, 2018. "Analysis of a hydraulic coupling system for dual oscillating foils with a parallel configuration," Energy, Elsevier, vol. 143(C), pages 273-283.
    11. Le, Tuyen Quang & Ko, Jin Hwan, 2015. "Effect of hydrofoil flexibility on the power extraction of a flapping tidal generator via two- and three-dimensional flow simulations," Renewable Energy, Elsevier, vol. 80(C), pages 275-285.
    12. Teng, Lubao & Deng, Jian & Pan, Dingyi & Shao, Xueming, 2016. "Effects of non-sinusoidal pitching motion on energy extraction performance of a semi-active flapping foil," Renewable Energy, Elsevier, vol. 85(C), pages 810-818.
    13. Xiao, Qing & Liao, Wei & Yang, Shuchi & Peng, Yan, 2012. "How motion trajectory affects energy extraction performance of a biomimic energy generator with an oscillating foil?," Renewable Energy, Elsevier, vol. 37(1), pages 61-75.
    14. Boudreau, Matthieu & Picard-Deland, Maxime & Dumas, Guy, 2020. "A parametric study and optimization of the fully-passive flapping-foil turbine at high Reynolds number," Renewable Energy, Elsevier, vol. 146(C), pages 1958-1975.
    15. Segura, E. & Morales, R. & Somolinos, J.A. & López, A., 2017. "Techno-economic challenges of tidal energy conversion systems: Current status and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 536-550.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Chenye & Liu, Xiaomin, 2024. "Numerical study on the energy extraction characteristics of a flapping foil with movable lateral flaps," Renewable Energy, Elsevier, vol. 225(C).
    2. Zhang, Yubing & Wang, Qixian & Han, Jiazhen & Xie, Yudong, 2023. "Effects of unsteady stream on hydrodynamic behavior of flexible hydrofoil in semi-passive mode," Renewable Energy, Elsevier, vol. 206(C), pages 451-465.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yubing & Wang, Qixian & Han, Jiazhen & Xie, Yudong, 2023. "Effects of unsteady stream on hydrodynamic behavior of flexible hydrofoil in semi-passive mode," Renewable Energy, Elsevier, vol. 206(C), pages 451-465.
    2. Li, Weizhong & Wang, Wen-Quan & Yan, Yan, 2020. "The effects of outline of the symmetrical flapping hydrofoil on energy harvesting performance," Renewable Energy, Elsevier, vol. 162(C), pages 624-638.
    3. Ma, Penglei & Wang, Yong & Xie, Yudong & Zhang, Jianhua, 2018. "Analysis of a hydraulic coupling system for dual oscillating foils with a parallel configuration," Energy, Elsevier, vol. 143(C), pages 273-283.
    4. Sun, Guang & Wang, Yong & Xie, Yudong & Lv, Kai & Sheng, Ruoyu, 2021. "Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil," Energy, Elsevier, vol. 225(C).
    5. Ma, Penglei & Yang, Zhihong & Wang, Yong & Liu, Haibin & Xie, Yudong, 2017. "Energy extraction and hydrodynamic behavior analysis by an oscillating hydrofoil device," Renewable Energy, Elsevier, vol. 113(C), pages 648-659.
    6. Tian, Chenye & Liu, Xiaomin, 2024. "Numerical study on the energy extraction characteristics of a flapping foil with movable lateral flaps," Renewable Energy, Elsevier, vol. 225(C).
    7. Jiang, W. & Mei, Z.Y. & Wu, F. & Han, A. & Xie, Y.H. & Xie, D.M., 2022. "Effect of shroud on the energy extraction performance of oscillating foil," Energy, Elsevier, vol. 239(PD).
    8. Liu, Zhen & Qu, Hengliang & Zhang, Guoliang, 2020. "Experimental and numerical investigations of a coupled-pitching hydrofoil under the fully-activated mode," Renewable Energy, Elsevier, vol. 155(C), pages 432-446.
    9. Ma, Penglei & Wang, Yong & Xie, Yudong & Huo, Zhipu, 2018. "Numerical analysis of a tidal current generator with dual flapping wings," Energy, Elsevier, vol. 155(C), pages 1077-1089.
    10. Liu, Zhen & Qu, Hengliang, 2022. "Numerical study on a coupled-pitching flexible hydrofoil under the semi-passive mode," Renewable Energy, Elsevier, vol. 189(C), pages 339-358.
    11. Liu, Zhen & Qu, Hengliang & Song, Xinyu & Chen, Zhengshou & Ni, Heqiang, 2023. "Energy-harvesting performance of tandem coupled-pitching hydrofoils under the semi-activated mode: An experimental study," Energy, Elsevier, vol. 279(C).
    12. Li, Yunzhu & Liu, Tianyuan & Wang, Yuqi & Xie, Yonghui, 2022. "Deep learning based real-time energy extraction system modeling for flapping foil," Energy, Elsevier, vol. 246(C).
    13. Karbasian, H.R. & Esfahani, J.A. & Barati, E., 2015. "Simulation of power extraction from tidal currents by flapping foil hydrokinetic turbines in tandem formation," Renewable Energy, Elsevier, vol. 81(C), pages 816-824.
    14. Siala, Firas F. & Liburdy, James A., 2020. "Power estimation of flapping foil energy harvesters using vortex impulse theory," Renewable Energy, Elsevier, vol. 154(C), pages 894-902.
    15. Karbasian, H.R. & Esfahani, J.A. & Barati, E., 2016. "The power extraction by flapping foil hydrokinetic turbine in swing arm mode," Renewable Energy, Elsevier, vol. 88(C), pages 130-142.
    16. Xie, Y.H. & Jiang, W. & Lu, K. & Zhang, D., 2016. "Numerical investigation into energy extraction of flapping airfoil with Gurney flaps," Energy, Elsevier, vol. 109(C), pages 694-702.
    17. Zhang, Yongkuang & Han, Xinyang & Hu, Yuxuan & Chen, Xihan & Li, Zhuohang & Gao, Feng & Chen, Weixing, 2024. "Dual-function flapping hydrofoil: Energy capture and propulsion in ocean waves," Renewable Energy, Elsevier, vol. 222(C).
    18. Zhang, Yue & Yang, Fuchun & Li, Yuetai & Qiu, Wenlei, 2021. "Design and numerical investigation of a multi-directional energy-harvesting device for UUVs," Energy, Elsevier, vol. 214(C).
    19. Xu, Wenhua & Xu, Guodong & Duan, Wenyang & Song, Zhijie & Lei, Jie, 2019. "Experimental and numerical study of a hydrokinetic turbine based on tandem flapping hydrofoils," Energy, Elsevier, vol. 174(C), pages 375-385.
    20. Si, Yulin & Liu, Xiaodong & Wang, Tao & Feng, Bo & Qian, Peng & Ma, Yong & Zhang, Dahai, 2022. "State-of-the-art review and future trends of development of tidal current energy converters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221031893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.