IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123018311.html
   My bibliography  Save this article

Amorphous cobalt boride exploring as the first first-row transition-metal-based metallic photocatalyst for efficient water splitting over 800 nm

Author

Listed:
  • Tang, Junying
  • Zhao, Tianshuo
  • He, Yulian
  • Guo, Ruitang
  • Pan, Weiguo
  • Zhang, Hua
  • Dou, Binlin

Abstract

Semiconductors often have limited photocatalytic water-splitting performances owing to the narrow light absorption and low effective carrier density. In response to these challenges, we report the discovery of metallic amorphous cobalt boride (Co2B) as the first first-row transition metallic photocatalyst. It was prepared via a simple chemical reduction method and performs efficient water splitting spanning the UV, visible light and near-infrared region (NIR) via interband transitions. It achieves bifunctional water splitting activities with H2 evolution rate of 202.3 μmol h−1 g−1 and O2 evolution rate of 74.8 μmol h−1 g−1, superior to the existing (semi-)metallic photocatalysts. The material shows over 1 % apparent quantum efficiency (AQE) and 20 % incident photon to current conversion efficiencies (IPCE) at the NIR region >800 nm. Theoretical and photophysical experimental studies synergistically confirm that the metallic nature with high carrier concentrations and amorphous structure with abundant active sites contribute to the good water splitting performance of Co2B. This research sets the foundation for the utilization of highly efficient transition metal-based metallic photocatalysts in photocatalysis across the entire solar spectrum.

Suggested Citation

  • Tang, Junying & Zhao, Tianshuo & He, Yulian & Guo, Ruitang & Pan, Weiguo & Zhang, Hua & Dou, Binlin, 2024. "Amorphous cobalt boride exploring as the first first-row transition-metal-based metallic photocatalyst for efficient water splitting over 800 nm," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018311
    DOI: 10.1016/j.renene.2023.119916
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123018311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.