IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip1s0960148123013587.html
   My bibliography  Save this article

A sustainable multi-objective optimization model for the design of hybrid power supply networks under uncertainty

Author

Listed:
  • Yadegari, Mahsa
  • Sahebi, Hadi
  • Razm, Sobhan
  • Ashayeri, Jalal

Abstract

In today's industrialized world, the scarcity of fossil fuels and the adverse biological effects resulting from fossil fuel consumption, on one hand, and the increasing population and energy demands, on the other hand, have posed significant challenges to the sustainable development of societies. This research has developed an optimization model for designing a hybrid energy supply network that simultaneously addresses economic, environmental, and social objectives. The economic goal of the model is to maximize after-tax company profits, while the environmental objective is to minimize greenhouse gas emissions, and the social objective is to maximize social profit. The optimal solution for individual goals reveals that the gas field is active and beneficial for economic objectives, renewable plants are active for environmental goals, and for social objectives, the gas field, combined heat and power (CHP), and wind power are active. The model is solved using the augmented ε-constraint method, and the resulting Pareto optimal solutions are provided to decision-makers. To account for real-world complexities, uncertainties in key model parameters have been considered. Validation for this study has been conducted using data from Iran, an energy exporter to Pakistan.

Suggested Citation

  • Yadegari, Mahsa & Sahebi, Hadi & Razm, Sobhan & Ashayeri, Jalal, 2023. "A sustainable multi-objective optimization model for the design of hybrid power supply networks under uncertainty," Renewable Energy, Elsevier, vol. 219(P1).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013587
    DOI: 10.1016/j.renene.2023.119443
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123013587
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tostado-Véliz, Marcos & Liang, Yingqi & Hasanien, Hany M. & Turky, Rania A. & Martínez-Moreno, Juan & Jurado, Francisco, 2023. "Robust optimal coordination of active distribution networks and energy communities with high penetration of renewables," Renewable Energy, Elsevier, vol. 218(C).
    2. Behzadi, Amirmohammad & Sadrizadeh, Sasan, 2023. "Grid-tied solar and biomass hybridization for multi-family houses in Sweden: An optimal rule-based control framework through machine learning approach," Renewable Energy, Elsevier, vol. 218(C).
    3. Buonomano, Annamaria & Calise, Francesco & d'Accadia, Massimo Dentice & Vicidomini, Maria, 2018. "A hybrid renewable system based on wind and solar energy coupled with an electrical storage: Dynamic simulation and economic assessment," Energy, Elsevier, vol. 155(C), pages 174-189.
    4. Wei, Zhao & Huang, Lihua, 2022. "Does renewable energy matter to achieve sustainable development? Fresh evidence from ten Asian economies," Renewable Energy, Elsevier, vol. 199(C), pages 759-767.
    5. Das, Barun K. & Hasan, Mahmudul & Das, Pronob, 2021. "Impact of storage technologies, temporal resolution, and PV tracking on stand-alone hybrid renewable energy for an Australian remote area application," Renewable Energy, Elsevier, vol. 173(C), pages 362-380.
    6. Wang, Meng & Niu, Dongxiao, 2019. "Research on project post-evaluation of wind power based on improved ANP and fuzzy comprehensive evaluation model of trapezoid subordinate function improved by interval number," Renewable Energy, Elsevier, vol. 132(C), pages 255-265.
    7. Thirunavukkarasu, M. & Lala, Himadri & Sawle, Yashwant, 2023. "Techno-economic-environmental analysis of off-grid hybrid energy systems using honey badger optimizer," Renewable Energy, Elsevier, vol. 218(C).
    8. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari & Farabi-Asl, Hadi, 2018. "A comprehensive approach for wind power plant potential assessment, application to northwestern Iran," Energy, Elsevier, vol. 164(C), pages 344-358.
    9. Razm, Sobhan & Brahimi, Nadjib & Hammami, Ramzi & Dolgui, Alexandre, 2023. "A production planning model for biorefineries with biomass perishability and biofuel transformation," International Journal of Production Economics, Elsevier, vol. 258(C).
    10. Xu, Fangqiu & Liu, Jicheng & Lin, Shuaishuai & Dai, Qiongjie & Li, Cunbin, 2018. "A multi-objective optimization model of hybrid energy storage system for non-grid-connected wind power: A case study in China," Energy, Elsevier, vol. 163(C), pages 585-603.
    11. Ghorbani, Narges & Kasaeian, Alibakhsh & Toopshekan, Ashkan & Bahrami, Leyli & Maghami, Amin, 2018. "Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability," Energy, Elsevier, vol. 154(C), pages 581-591.
    12. Dehghani, Ehsan & Jabalameli, Mohammad Saeed & Jabbarzadeh, Armin, 2018. "Robust design and optimization of solar photovoltaic supply chain in an uncertain environment," Energy, Elsevier, vol. 142(C), pages 139-156.
    13. Guangqian, Du & Bekhrad, Kaveh & Azarikhah, Pouria & Maleki, Akbar, 2018. "A hybrid algorithm based optimization on modeling of grid independent biodiesel-based hybrid solar/wind systems," Renewable Energy, Elsevier, vol. 122(C), pages 551-560.
    14. Ullah, Zia & Elkadeem, M.R. & Kotb, Kotb M. & Taha, Ibrahim B.M. & Wang, Shaorong, 2021. "Multi-criteria decision-making model for optimal planning of on/off grid hybrid solar, wind, hydro, biomass clean electricity supply," Renewable Energy, Elsevier, vol. 179(C), pages 885-910.
    15. Yu, Chian-Son & Li, Han-Lin, 2000. "A robust optimization model for stochastic logistic problems," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 385-397, March.
    16. Rosso-Cerón, A.M. & León-Cardona, D.F. & Kafarov, V., 2021. "Soft computing tool for aiding the integration of hybrid sustainable renewable energy systems, case of Putumayo, Colombia," Renewable Energy, Elsevier, vol. 174(C), pages 616-634.
    17. Howard, B. & Modi, V., 2017. "Examination of the optimal operation of building scale combined heat and power systems under disparate climate and GHG emissions rates," Applied Energy, Elsevier, vol. 185(P1), pages 280-293.
    18. Ghelichi, Zabih & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "A stochastic programming approach toward optimal design and planning of an integrated green biodiesel supply chain network under uncertainty: A case study," Energy, Elsevier, vol. 156(C), pages 661-687.
    19. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    20. Abdel-Basset, Mohamed & Gamal, Abduallah & Chakrabortty, Ripon K. & Ryan, Michael J., 2021. "Evaluation approach for sustainable renewable energy systems under uncertain environment: A case study," Renewable Energy, Elsevier, vol. 168(C), pages 1073-1095.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lujano-Rojas, Juan M. & Dufo-López, Rodolfo & Artal-Sevil, Jesús Sergio & García-Paricio, Eduardo, 2024. "Design of small-scale hybrid energy systems taking into account generation and demand uncertainties," Renewable Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sekeroglu, Ahmet & Erol, Demet, 2023. "Site selection modeling of hybrid renewable energy facilities using suitability index in spatial planning," Renewable Energy, Elsevier, vol. 219(P1).
    2. Jabbarzadeh, Armin & Shamsi, Meisam, 2025. "Designing a resilient and sustainable multi-feedstock bioethanol supply chain: Integration of mathematical modeling and machine learning," Applied Energy, Elsevier, vol. 377(PB).
    3. Das, Sayan & Dutta, Risav & De, Souvanik & De, Sudipta, 2024. "Review of multi-criteria decision-making for sustainable decentralized hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    4. Tsai, Jung-Fa, 2007. "An optimization approach for supply chain management models with quantity discount policy," European Journal of Operational Research, Elsevier, vol. 177(2), pages 982-994, March.
    5. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    6. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    7. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    8. Erfan Hassannayebi & Seyed Hessameddin Zegordi & Mohammad Reza Amin-Naseri & Masoud Yaghini, 2017. "Train timetabling at rapid rail transit lines: a robust multi-objective stochastic programming approach," Operational Research, Springer, vol. 17(2), pages 435-477, July.
    9. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    10. Azaron, A. & Brown, K.N. & Tarim, S.A. & Modarres, M., 2008. "A multi-objective stochastic programming approach for supply chain design considering risk," International Journal of Production Economics, Elsevier, vol. 116(1), pages 129-138, November.
    11. Toopshekan, Ashkan & Abedian, Ali & Azizi, Arian & Ahmadi, Esmaeil & Vaziri Rad, Mohammad Amin, 2023. "Optimization of a CHP system using a forecasting dispatch and teaching-learning-based optimization algorithm," Energy, Elsevier, vol. 285(C).
    12. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    13. Aalaei, Amin & Davoudpour, Hamid, 2017. "A robust optimization model for cellular manufacturing system into supply chain management," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 667-679.
    14. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    15. Masoud Hekmatfar & M. R. M. Aliha & Mir Saman Pishvaee & Tomasz Sadowski, 2023. "A Robust Flexible Optimization Model for 3D-Layout of Interior Equipment in a Multi-Floor Satellite," Mathematics, MDPI, vol. 11(24), pages 1-41, December.
    16. Javid Jouzdani & Mohammad Fathian & Ahmad Makui & Mehdi Heydari, 2020. "Robust design and planning for a multi-mode multi-product supply network: a dairy industry case study," Operational Research, Springer, vol. 20(3), pages 1811-1840, September.
    17. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2021. "Hybrid stochastic robust optimization and robust optimization for energy planning – A social impact-constrained case study," Applied Energy, Elsevier, vol. 298(C).
    18. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    19. Ji, Ling & Huang, Guo-He & Huang, Lu-Cheng & Xie, Yu-Lei & Niu, Dong-Xiao, 2016. "Inexact stochastic risk-aversion optimal day-ahead dispatch model for electricity system management with wind power under uncertainty," Energy, Elsevier, vol. 109(C), pages 920-932.
    20. Yan, Shangyao & Tang, Ching-Hui, 2009. "Inter-city bus scheduling under variable market share and uncertain market demands," Omega, Elsevier, vol. 37(1), pages 178-192, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.