IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp474-485.html
   My bibliography  Save this article

A methodology for determining the incentive policy for photovoltaic distributed generation that leverages its technical benefits in the distribution system

Author

Listed:
  • Stecanella, Priscilla A. Juá
  • Camargos, Ronaldo S.C.
  • Vieira, Daniel
  • Domingues, Elder G.
  • Ferreira Filho, Anésio de L.

Abstract

Although photovoltaic distributed generation (PVDG) is expanding worldwide, its growth is still relatively small in most countries. Thus, it is necessary to establish appropriate incentive policies that increase the integration of PVDG into the distribution system. The impacts that the adoption of each policy causes must be analyzed to maximize the benefits and minimize the technical problems arising from the integration of PVDG into the grid. In this context, this study proposes a methodology to determine the most appropriate policy to encourage PVDG by observing its technical impacts on the grid. A stochastic model is proposed to determine the technical and financial impacts on voltage levels, technical losses, and peak demand derived from the integration of PVDG. The proposed methodology was applied to dozens of real feeders, seeking to compare the Net Metering (NeM) and the Feed-in Tariff (FiT) policies. The results showed that the NeM policy presented the best performance. Among the two investigated FiT policies, it was verified that the incentive to PVDG with lower powers implies greater benefits. This methodology allows the determination of the most appropriate PVDG incentive policy considering its technical impacts on the grid.

Suggested Citation

  • Stecanella, Priscilla A. Juá & Camargos, Ronaldo S.C. & Vieira, Daniel & Domingues, Elder G. & Ferreira Filho, Anésio de L., 2022. "A methodology for determining the incentive policy for photovoltaic distributed generation that leverages its technical benefits in the distribution system," Renewable Energy, Elsevier, vol. 199(C), pages 474-485.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:474-485
    DOI: 10.1016/j.renene.2022.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122013416
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Azzopardi, Brian & Gabriel-Buenaventura, Alejandro, 2014. "Feasibility assessment for high penetration of distributed photovoltaics based on net demand planning," Energy, Elsevier, vol. 76(C), pages 233-240.
    2. Goop, Joel & Odenberger, Mikael & Johnsson, Filip, 2016. "Distributed solar and wind power – Impact on distribution losses," Energy, Elsevier, vol. 112(C), pages 273-284.
    3. Karimi, M. & Mokhlis, H. & Naidu, K. & Uddin, S. & Bakar, A.H.A., 2016. "Photovoltaic penetration issues and impacts in distribution network – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 594-605.
    4. Paatero, Jukka V. & Lund, Peter D., 2007. "Effects of large-scale photovoltaic power integration on electricity distribution networks," Renewable Energy, Elsevier, vol. 32(2), pages 216-234.
    5. Crago, Christine L. & Koegler, Eric, 2018. "Drivers of growth in commercial-scale solar PV capacity," Energy Policy, Elsevier, vol. 120(C), pages 481-491.
    6. Moura, Ricardo & Brito, Miguel Centeno, 2019. "Prosumer aggregation policies, country experience and business models," Energy Policy, Elsevier, vol. 132(C), pages 820-830.
    7. Pereira da Silva, Patrícia & Dantas, Guilherme & Pereira, Guillermo Ivan & Câmara, Lorrane & De Castro, Nivalde J., 2019. "Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 30-39.
    8. Krasko, Vitaliy A. & Doris, Elizabeth, 2013. "State distributed PV policies: Can low cost (to government) policies have a market impact?," Energy Policy, Elsevier, vol. 59(C), pages 172-181.
    9. Coria, Gustavo & Penizzotto, Franco & Pringles, Rolando, 2019. "Economic analysis of photovoltaic projects: The Argentinian renewable generation policy for residential sectors," Renewable Energy, Elsevier, vol. 133(C), pages 1167-1177.
    10. Aquila, Giancarlo & Pamplona, Edson de Oliveira & Queiroz, Anderson Rodrigo de & Rotela Junior, Paulo & Fonseca, Marcelo Nunes, 2017. "An overview of incentive policies for the expansion of renewable energy generation in electricity power systems and the Brazilian experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1090-1098.
    11. Coffman, Makena & Wee, Sherilyn & Bonham, Carl & Salim, Germaine, 2016. "A policy analysis of Hawaii's solar tax credit," Renewable Energy, Elsevier, vol. 85(C), pages 1036-1043.
    12. Chaudhary, Priyanka & Rizwan, M., 2018. "Voltage regulation mitigation techniques in distribution system with high PV penetration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3279-3287.
    13. Andrade, Jorge Vleberton Bessa de & Rodrigues, Bruno Noronha & Santos, Ivan Felipe Silva dos & Haddad, Jamil & Tiago Filho, Geraldo Lúcio, 2020. "Constitutional aspects of distributed generation policies for promoting Brazilian economic development," Energy Policy, Elsevier, vol. 143(C).
    14. Vilaça Gomes, P. & Knak Neto, N. & Carvalho, L. & Sumaili, J. & Saraiva, J.T. & Dias, B.H. & Miranda, V. & Souza, S.M., 2018. "Technical-economic analysis for the integration of PV systems in Brazil considering policy and regulatory issues," Energy Policy, Elsevier, vol. 115(C), pages 199-206.
    15. Holdermann, Claudius & Kissel, Johannes & Beigel, Jürgen, 2014. "Distributed photovoltaic generation in Brazil: An economic viability analysis of small-scale photovoltaic systems in the residential and commercial sectors," Energy Policy, Elsevier, vol. 67(C), pages 612-617.
    16. Bayer, Benjamin & Matschoss, Patrick & Thomas, Heiko & Marian, Adela, 2018. "The German experience with integrating photovoltaic systems into the low-voltage grids," Renewable Energy, Elsevier, vol. 119(C), pages 129-141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arnob Das & Susmita Datta Peu & Md. Abdul Mannan Akanda & Abu Reza Md. Towfiqul Islam, 2023. "Peer-to-Peer Energy Trading Pricing Mechanisms: Towards a Comprehensive Analysis of Energy and Network Service Pricing (NSP) Mechanisms to Get Sustainable Enviro-Economical Energy Sector," Energies, MDPI, vol. 16(5), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Oliveira Pinto Coelho, Eden & Aquila, Giancarlo & Bonatto, Benedito Donizeti & Balestrassi, Pedro Paulo & de Oliveira Pamplona, Edson & Nakamura, Wilson Toshiro, 2021. "Regulatory impact of photovoltaic prosumer policies in Brazil based on a financial risk analysis," Utilities Policy, Elsevier, vol. 70(C).
    2. de Oliveira, Lucas Guedes & Aquila, Giancarlo & Balestrassi, Pedro Paulo & de Paiva, Anderson Paulo & de Queiroz, Anderson Rodrigo & de Oliveira Pamplona, Edson & Camatta, Ulisses Pessin, 2020. "Evaluating economic feasibility and maximization of social welfare of photovoltaic projects developed for the Brazilian northeastern coast: An attribute agreement analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    3. Aquila, Giancarlo & Coelho, Eden de Oliveira Pinto & Bonatto, Benedito Donizeti & Pamplona, Edson de Oliveira & Nakamura, Wilson Toshiro, 2021. "Perspective of uncertainty and risk from the CVaR-LCOE approach: An analysis of the case of PV microgeneration in Minas Gerais, Brazil," Energy, Elsevier, vol. 226(C).
    4. Bose, A.S. & Sarkar, S., 2019. "India's e-reverse auctions (2017–2018) for allocating renewable energy capacity: An evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 762-774.
    5. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    6. Pillot, Benjamin & de Siqueira, Sandro & Dias, João Batista, 2018. "Grid parity analysis of distributed PV generation using Monte Carlo approach: The Brazilian case," Renewable Energy, Elsevier, vol. 127(C), pages 974-988.
    7. Carstens, Danielle Denes dos Santos & Cunha, Sieglinde Kindl da, 2019. "Challenges and opportunities for the growth of solar photovoltaic energy in Brazil," Energy Policy, Elsevier, vol. 125(C), pages 396-404.
    8. Felipe Moraes do Nascimento & Julio Cezar Mairesse Siluk & Fernando de Souza Savian & Taís Bisognin Garlet & José Renes Pinheiro & Carlos Ramos, 2020. "Factors for Measuring Photovoltaic Adoption from the Perspective of Operators," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    9. Alhammami, Hasan & An, Heungjo, 2021. "Techno-economic analysis and policy implications for promoting residential rooftop solar photovoltaics in Abu Dhabi, UAE," Renewable Energy, Elsevier, vol. 167(C), pages 359-368.
    10. Ali, Md Sawkat & Haque, Md Mejbaul & Wolfs, Peter, 2019. "A review of topological ordering based voltage rise mitigation methods for LV distribution networks with high levels of photovoltaic penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 463-476.
    11. Kryonidis, Georgios C. & Kontis, Eleftherios O. & Papadopoulos, Theofilos A. & Pippi, Kalliopi D. & Nousdilis, Angelos I. & Barzegkar-Ntovom, Georgios A. & Boubaris, Alexandros D. & Papanikolaou, Nick, 2021. "Ancillary services in active distribution networks: A review of technological trends from operational and online analysis perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    12. Samper, M. & Coria, G. & Facchini, M., 2021. "Grid parity analysis of distributed PV generation considering tariff policies in Argentina," Energy Policy, Elsevier, vol. 157(C).
    13. Jed J. Cohen & Levan Elbakidze & Randall Jackson, 2022. "Interstate protectionism: the case of solar renewable energy credits," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(2), pages 717-738, March.
    14. Silva, Tatiane C. & Pinto, Gabriel M. & de Souza, Túlio A.Z. & Valerio, Victor & Silvério, Naidion M. & Coronado, Christian J.R. & Guardia, Eduardo Crestana, 2020. "Technical and economical evaluation of the photovoltaic system in Brazilian public buildings: A case study for peak and off-peak hours," Energy, Elsevier, vol. 190(C).
    15. Chu, Ling & Takeuchi, Kenji, 2022. "The non-operating solar projects: Examining the impact of the feed-in tariff amendment in Japan," Energy Policy, Elsevier, vol. 160(C).
    16. Morteza Zare Oskouei & Ayşe Aybike Şeker & Süleyman Tunçel & Emin Demirbaş & Tuba Gözel & Mehmet Hakan Hocaoğlu & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network," Sustainability, MDPI, vol. 14(4), pages 1-34, February.
    17. Sheikhhoseini, Mousa & Rashidinejad, Masoud & Ameri, Mehran & Abdollahi, Amir, 2018. "Economic analysis of support policies for residential photovoltaic systems in Iran," Energy, Elsevier, vol. 165(PA), pages 853-866.
    18. Hartvigsson, Elias & Odenberger, Mikael & Chen, Peiyuan & Nyholm, Emil, 2021. "Estimating national and local low-voltage grid capacity for residential solar photovoltaic in Sweden, UK and Germany," Renewable Energy, Elsevier, vol. 171(C), pages 915-926.
    19. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working papers of CATT hal-02976874, HAL.
    20. Timilsina,Govinda R., 2021. "Economics of Distributed Photovoltaics : An Illustration from Bangladesh," Policy Research Working Paper Series 9699, The World Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:474-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.