IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v198y2022icp367-379.html
   My bibliography  Save this article

Effects of Vortex Structure on Hydraulic Loss in a Low Head Francis Turbine under Overall Operating Conditions Base on Entropy Production Method

Author

Listed:
  • Lihui, Xu
  • Tao, Guo
  • Wenquan, Wang

Abstract

Multi-energy complementary power generation mode has become the theme of modern power grid construction. In response to the requirements of the national multi-energy strategy, the operation mode of hydropower units will inevitably change frequently, resulting in unpredictable hydraulic unstable flow phenomena (such as the blade passage vortex, the vortex rope in the draft tube, etc.) which will reduce the hydraulic performance of units and may lead to strong vibration of units, and even threaten the safe operation of units and even power stations in severe cases. In order to study the effect of the blade passage vortex and the vortex rope in the draft tube on the hydraulic losses under the part load conditions, the sliding mesh method and SST k-ω turbulence model are adopted. The blade passage vortex and the vortex rope in the draft tube captured by the latest Liutex vortex identification method undergo a contrastive analysis with the hydraulic loss of internal flow based on the entropy production theory. The results indicate that compared with the results in the references, the results of the research are verified accurate; under different upstream flow conditions, the proportion of the hydraulic losses of the spiral casing is small and has no obvious changes; the shock and stall phenomena, the dynamic-static interference, the relatively high flow velocity gradient, and the streamwise vortices in the guide vane domain are the main factors that cause the increase of entropy production; a large number of the blade passage vortices, the fluid-impact blades, and the tip leakage vortices are the main causing factors of the hydraulic losses in the runner; and the various shapes of the vortex rope in the draft tube can lead to the dramatic increase of the hydraulic losses of the draft tube as the opening decreases, and the hydraulic losses of the draft tube account for the largest proportion, followed by that of the runner. At the designed flow rate, the hydraulic loss of draft tube is 0.58 m, accounting for 50% of the total channel hydraulic loss, and that of runner is 0.38 m, accounting for 32.6% of the total channel hydraulic loss. When the flow rate drops to 55% of the designed flow rate, the hydraulic loss of draft tube is 1.95 m, accounting for 68% of the whole channel, and that of runner is 0.70 m, accounting for 24.4% of the whole channel.

Suggested Citation

  • Lihui, Xu & Tao, Guo & Wenquan, Wang, 2022. "Effects of Vortex Structure on Hydraulic Loss in a Low Head Francis Turbine under Overall Operating Conditions Base on Entropy Production Method," Renewable Energy, Elsevier, vol. 198(C), pages 367-379.
  • Handle: RePEc:eee:renene:v:198:y:2022:i:c:p:367-379
    DOI: 10.1016/j.renene.2022.08.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122012514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, An & Tang, Yibo & Tang, Qinghong & Cai, Jianguo & Zhao, Lei & Ge, Xinfeng, 2022. "Energy analysis of Francis turbine for various mass flow rate conditions based on entropy production theory," Renewable Energy, Elsevier, vol. 183(C), pages 447-458.
    2. Tao, Ran & Xiao, Ruofu & Wang, Fujun & Liu, Weichao, 2018. "Cavitation behavior study in the pump mode of a reversible pump-turbine," Renewable Energy, Elsevier, vol. 125(C), pages 655-667.
    3. Tao Guo & Lihui Xu & Wenquan Wang, 2021. "Influence of Upstream Disturbances on the Vortex Structure of Francis Turbine Based on the Criteria of Identification of Various Vortexes," Energies, MDPI, vol. 14(22), pages 1-21, November.
    4. Yu, Zhi-Feng & Wang, Wen-Quan & Yan, Yan & Liu, Xing-Shun, 2021. "Energy loss evaluation in a Francis turbine under overall operating conditions using entropy production method," Renewable Energy, Elsevier, vol. 169(C), pages 982-999.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhiqi & Xie, Baoqi & Xia, Xiaoxia & Yang, Huya & Zuo, Qingsong & Liu, Zhipeng, 2022. "Energy loss of radial inflow turbine for organic Rankine cycle using mixture based on entropy production method," Energy, Elsevier, vol. 245(C).
    2. Jianyong Hu & Qingbo Wang & Zhenzhu Meng & Hongge Song & Bowen Chen & Hui Shen, 2023. "Numerical Study of the Internal Fluid Dynamics of Draft Tube in Seawater Pumped Storage Hydropower Plant," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    3. Yang, Gang & Shen, Xi & Shi, Lei & Zhang, Desheng & Zhao, Xutao & (Bart) van Esch, B.P.M., 2023. "Numerical investigation of hump characteristic improvement in a large vertical centrifugal pump with special emphasis on energy loss mechanism," Energy, Elsevier, vol. 273(C).
    4. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    5. Kan, Kan & Binama, Maxime & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Su, Wentao & Muhirwa, Alexis, 2022. "Pump as turbine cavitation performance for both conventional and reverse operating modes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Hu, Jinhong & Zhao, Zhigao & He, Xianghui & Zeng, Wei & Yang, Jiebin & Yang, Jiandong, 2023. "Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 212(C), pages 333-349.
    7. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2023. "Transition of amplitude–frequency characteristic in rotor–stator interaction of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 205(C), pages 663-677.
    8. Zibiao Li & Han Li & Siwei Wang & Xue Lu, 2022. "The Impact of Science and Technology Finance on Regional Collaborative Innovation: The Threshold Effect of Absorptive Capacity," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    9. Shi, Guangtai & Wang, Shan & Xiao, Yexiang & Liu, Zongku & Li, Helin & Liu, Xiaobing, 2021. "Effect of cavitation on energy conversion characteristics of a multiphase pump," Renewable Energy, Elsevier, vol. 177(C), pages 1308-1320.
    10. Tao, Ran & Xiao, Ruofu & Wang, Fujun & Liu, Weichao, 2019. "Improving the cavitation inception performance of a reversible pump-turbine in pump mode by blade profile redesign: Design concept, method and applications," Renewable Energy, Elsevier, vol. 133(C), pages 325-342.
    11. Bozorgasareh, Hamidreza & Khalesi, Javad & Jafari, Mohammad & Gazori, Heshmat Olah, 2021. "Performance improvement of mixed-flow centrifugal pumps with new impeller shrouds: Numerical and experimental investigations," Renewable Energy, Elsevier, vol. 163(C), pages 635-648.
    12. Wei Zang & Yuan Zheng & Yuquan Zhang & Xiangfeng Lin & Yanwei Li & Emmanuel Fernandez-Rodriguez, 2022. "Numerical Investigation on a Diffuser-Augmented Horizontal Axis Tidal Stream Turbine with the Entropy Production Theory," Mathematics, MDPI, vol. 11(1), pages 1-18, December.
    13. Lianda Duan & Dekuan Wang & Guiping Wang & Changlin Han & Weijun Zhang & Xiaobo Liu & Cong Wang & Zheng Che & Chang Chen, 2022. "Piecewise Causality Study between Power Load and Vibration in Hydro-Turbine Generator Unit for a Low-Carbon Era," Energies, MDPI, vol. 15(3), pages 1-13, February.
    14. Li, Deyou & Song, Yechen & Lin, Song & Wang, Hongjie & Qin, Yonglin & Wei, Xianzhu, 2021. "Effect mechanism of cavitation on the hump characteristic of a pump-turbine," Renewable Energy, Elsevier, vol. 167(C), pages 369-383.
    15. Yuan, Zhiyi & Zhang, Yongxue & Zhang, Jinya & Zhu, Jianjun, 2021. "Experimental studies of unsteady cavitation at the tongue of a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 177(C), pages 1265-1281.
    16. Lu, Zhaoheng & Tao, Ran & Yao, Zhifeng & Liu, Weichao & Xiao, Ruofu, 2022. "Effects of guide vane shape on the performances of pump-turbine: A comparative study in energy storage and power generation," Renewable Energy, Elsevier, vol. 197(C), pages 268-287.
    17. Cao, Jingwei & Luo, Yongyao & Presas, Alexandre & Ahn, Soo-Hwang & Wang, Zhengwei & Huang, Xingxing & Liu, Yan, 2022. "Influence of rotation on the modal characteristics of a bulb turbine unit rotor," Renewable Energy, Elsevier, vol. 187(C), pages 887-895.
    18. Zhang, Wenwu & Xie, Xing & Zhu, Baoshan & Ma, Zhe, 2021. "Analysis of phase interaction and gas holdup in a multistage multiphase rotodynamic pump based on a modified Euler two-fluid model," Renewable Energy, Elsevier, vol. 164(C), pages 1496-1507.
    19. Jie He & Qihang Liu & Zheng Long & Yujia Zhang & Xiumei Liu & Shaobing Xiang & Beibei Li & Shuyun Qiao, 2022. "Characteristics of Cavitation Flow for a Regulating Valve Based on Entropy Production Theory," Energies, MDPI, vol. 15(17), pages 1-18, September.
    20. Wang, Cong & Zhang, Yongxue & Yuan, Zhiyi & Ji, Kaizhuo, 2020. "Development and application of the entropy production diagnostic model to the cavitation flow of a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 154(C), pages 774-785.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:198:y:2022:i:c:p:367-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.