IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp110-124.html
   My bibliography  Save this article

Lipase-Ca2+ hybrid nanobiocatalysts through interfacial protein-inorganic self-assembly in deep-eutectic solvents (DES)/water two-phase system for biodiesel production

Author

Listed:
  • Zhang, Zhijin
  • Du, Yingjie
  • Kuang, Geling
  • Shen, Xuejian
  • Jia, Xiaotong
  • Wang, Ziyuan
  • Feng, Yuxiao
  • Jia, Shiru
  • Liu, Fufeng
  • Bilal, Muhammad
  • Cui, Jiandong

Abstract

The production of biodiesel catalyzed by lipase has the advantages of simple process, low energy consumption, and low wastewater treatment requirements. However, low activity, poor stability, and difficulty in recycling still limit the application of lipase in production of biodiesel. Herein, a novel lipase hybrid biocatalyst with superior catalytic activity and stability (lipase from Aspergillus oryzae CJLU-3, AOCL@CaP in DES) was developed by dual activation of Ca2+ and interfacial effect of deep-eutectic solvents (DES)/water two-phase system. AOCL@CaP in DES exhibited significantly enhanced enzymatic activity with a Kcat/Km value of 692 s−1 mM−1 and excellent thermostability, tolerance to chemical denaturants, substrate selectivity, and reusability compared with free lipase. Recovery activity of the prepared hybrid biocatalyst in pure water system (AOCL@CaP) and AOCL@CaP in DES was 195% and 250% using p-NPL as substrate, respectively. AOCL@CaP in DES exhibited about 253% of the original activity after 100 days of storage, while free AOCL, AOCL@CaP almost completely lost activity. The FAME content in product biodiesel catalyzed from soybean oil by AOCL@CaP was only 60%, However, the FAME content catalyzed by AOCL@CaP in DES reached 87%, and could be maintained at 50% even after 10 cycles.

Suggested Citation

  • Zhang, Zhijin & Du, Yingjie & Kuang, Geling & Shen, Xuejian & Jia, Xiaotong & Wang, Ziyuan & Feng, Yuxiao & Jia, Shiru & Liu, Fufeng & Bilal, Muhammad & Cui, Jiandong, 2022. "Lipase-Ca2+ hybrid nanobiocatalysts through interfacial protein-inorganic self-assembly in deep-eutectic solvents (DES)/water two-phase system for biodiesel production," Renewable Energy, Elsevier, vol. 197(C), pages 110-124.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:110-124
    DOI: 10.1016/j.renene.2022.07.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122010941
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sokač, Tea & Gojun, Martin & Tušek, Ana Jurinjak & Šalić, Anita & Zelić, Bruno, 2020. "Purification of biodiesel produced by lipase catalysed transesterification by ultrafiltration: Selection of membranes and analysis of membrane blocking mechanisms," Renewable Energy, Elsevier, vol. 159(C), pages 642-651.
    2. Panchal, Balaji & Zhu, Zheng & Qin, Shenjun & Chang, Tao & Zhao, Qiaojing & Sun, Yuzhuang & Zhao, Cunliang & Wang, Jinxi & Bian, Kai & Rankhamb, Santosh, 2022. "The current state applications of ethyl carbonate with ionic liquid in sustainable biodiesel production: A review," Renewable Energy, Elsevier, vol. 181(C), pages 341-354.
    3. Nayak, Sheetal N. & Bhasin, Chandra Prakash & Nayak, Milap G., 2019. "A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems," Renewable Energy, Elsevier, vol. 143(C), pages 1366-1387.
    4. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    5. Tacias-Pascacio, Veymar G. & Torrestiana-Sánchez, Beatriz & Dal Magro, Lucas & Virgen-Ortíz, Jose J. & Suárez-Ruíz, Francisco J. & Rodrigues, Rafael C. & Fernandez-Lafuente, Roberto, 2019. "Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization," Renewable Energy, Elsevier, vol. 135(C), pages 1-9.
    6. Szczęsna Antczak, Mirosława & Kubiak, Aneta & Antczak, Tadeusz & Bielecki, Stanisław, 2009. "Enzymatic biodiesel synthesis – Key factors affecting efficiency of the process," Renewable Energy, Elsevier, vol. 34(5), pages 1185-1194.
    7. Zhao, Xuebing & Qi, Feng & Yuan, Chongli & Du, Wei & Liu, Dehua, 2015. "Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 182-197.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Le & Jiao, Xiaobo & Hu, Hongtong & Shen, Xuejian & Zhao, Juan & Feng, Yuxiao & Li, Conghai & Du, Yingjie & Cui, Jiandong & Jia, Shiru, 2021. "Activated magnetic lipase-inorganic hybrid nanoflowers: A highly active and recyclable nanobiocatalyst for biodiesel production," Renewable Energy, Elsevier, vol. 171(C), pages 825-832.
    2. Tacias-Pascacio, Veymar G. & Torrestiana-Sánchez, Beatriz & Dal Magro, Lucas & Virgen-Ortíz, Jose J. & Suárez-Ruíz, Francisco J. & Rodrigues, Rafael C. & Fernandez-Lafuente, Roberto, 2019. "Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization," Renewable Energy, Elsevier, vol. 135(C), pages 1-9.
    3. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    4. Silvia Cesarini & F. I. Javier Pastor & Per M. Nielsen & Pilar Diaz, 2015. "Moving towards a Competitive Fully Enzymatic Biodiesel Process," Sustainability, MDPI, vol. 7(6), pages 1-20, June.
    5. Padula, Miquele L. & Romero, Arthur S. & Hotza, Dachamir & Innocentini, Murilo D.M. & Pinto, Maria E.G. & Pedrini, Augusto S. & Rebelatto, Evertan & Ribeiro, Luiz Fernando B. & Zin, Guilherme & Olivei, 2022. "Dehydration of fatty acid methyl ester mixtures from enzymatic biodiesel using a modified PVDF membrane," Renewable Energy, Elsevier, vol. 187(C), pages 237-247.
    6. Samuel Santos & Jaime Puna & João Gomes, 2020. "A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production," Energies, MDPI, vol. 13(11), pages 1-19, June.
    7. Arumugam, A. & Thulasidharan, D. & Jegadeesan, Gautham B., 2018. "Process optimization of biodiesel production from Hevea brasiliensis oil using lipase immobilized on spherical silica aerogel," Renewable Energy, Elsevier, vol. 116(PA), pages 755-761.
    8. Liu, Xiaoyan & Zhu, Fenfen & Zhang, Rongyan & Zhao, Luyao & Qi, Juanjuan, 2021. "Recent progress on biodiesel production from municipal sewage sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Carlos Luna & Juan Calero & Antonio A. Romero & Felipa M. Bautista & Diego Luna, 2022. "Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review," Energies, MDPI, vol. 15(9), pages 1-39, April.
    10. Migle Santaraite & Egle Sendzikiene & Violeta Makareviciene & Kiril Kazancev, 2020. "Biodiesel Production by Lipase-Catalyzed in Situ Transesterification of Rapeseed Oil Containing a High Free Fatty Acid Content with Ethanol in Diesel Fuel Media," Energies, MDPI, vol. 13(10), pages 1-12, May.
    11. Patchimpet, Jaran & Simpson, Benjamin K. & Sangkharak, Kanokphorn & Klomklao, Sappasith, 2020. "Optimization of process variables for the production of biodiesel by transesterification of used cooking oil using lipase from Nile tilapia viscera," Renewable Energy, Elsevier, vol. 153(C), pages 861-869.
    12. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
    13. Boris Guzmán-Martínez & Roberto Limas-Ballesteros & Jin An Wang & Liliana Alamilla-Beltrán & Lifang Chen & Luis Enrique Noreña, 2022. "Microencapsulation of Lipases Produced by Dripping and Jet Break-Up for Biodiesel Production," Energies, MDPI, vol. 15(24), pages 1-18, December.
    14. Chattopadhyay, Soham & Karemore, Ankush & Das, Sancharini & Deysarkar, Asoke & Sen, Ramkrishna, 2011. "Biocatalytic production of biodiesel from cottonseed oil: Standardization of process parameters and comparison of fuel characteristics," Applied Energy, Elsevier, vol. 88(4), pages 1251-1256, April.
    15. Ennaceri, Houda & Fischer, Kristina & Schulze, Agnes & Moheimani, Navid Reza, 2022. "Membrane fouling control for sustainable microalgal biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    16. Yaakob, Zahira & Mohammad, Masita & Alherbawi, Mohammad & Alam, Zahangir & Sopian, Kamaruzaman, 2013. "Overview of the production of biodiesel from Waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 184-193.
    17. Yahya, Syahirah & Muhamad Wahab, Syamsul Kamar & Harun, Farah Wahida, 2020. "Optimization of biodiesel production from waste cooking oil using Fe-Montmorillonite K10 by response surface methodology," Renewable Energy, Elsevier, vol. 157(C), pages 164-172.
    18. Arumugam, A. & Ponnusami, V., 2014. "Biodiesel production from Calophyllum inophyllum oil using lipase producing Rhizopus oryzae cells immobilized within reticulated foams," Renewable Energy, Elsevier, vol. 64(C), pages 276-282.
    19. Guldhe, Abhishek & Singh, Poonam & Kumari, Sheena & Rawat, Ismail & Permaul, Kugen & Bux, Faizal, 2016. "Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst," Renewable Energy, Elsevier, vol. 85(C), pages 1002-1010.
    20. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:110-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.