IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v193y2022icp645-656.html
   My bibliography  Save this article

Heat transfer performance of deep borehole heat exchanger with different operation modes

Author

Listed:
  • Huang, Shuai
  • Zhu, Ke
  • Dong, Jiankai
  • Li, Ji
  • Kong, Weizheng
  • Jiang, Yiqiang
  • Fang, Zhaohong

Abstract

The deep borehole heat exchanger (DBHE) is an essential component of medium-depth geothermal heat pump systems (MD-GHPs). Compared with the conventional borehole heat exchanger, the DBHE has the advantages of minimal land area need, good seasonal heat storage performance and high efficiency in winter. However, most current DBHE research is focused on a single operation mode, and few studies on multiple operation modes. In this study, a DBHE heat transfer model is developed and its governing equations are discretized using the Finite Difference Method (FDM). The model is then validated using measured data from a real-world engineering project. This is followed by an analysis of the outlet water temperature, heat loss rate, maximum heat affected radius, and rock and soil heat recovery characteristics of DBHE with a variety of run-stop ratios (i.e., the ratio of the running time to the intermission time in a day). The following are the key findings: thermal recovery of rock and soil, as well as DBHE operation stability, are negatively correlated with the run-stop ratio, but DBHE heat loss rate is positively correlated with the run-stop ratio; when the run-stop ratio is 24:0 after 15 years of operation, the heat affected radius of DBHE on the surrounding rock and soil is 91.36 m; the other three run-stop ratios (i.e., 16:8,12:12 and 8:16) maybe reduced by 9.07%, 17.34% and 24.86%, respectively. The results of this study have implications for the design of DBHE with different operation modes.

Suggested Citation

  • Huang, Shuai & Zhu, Ke & Dong, Jiankai & Li, Ji & Kong, Weizheng & Jiang, Yiqiang & Fang, Zhaohong, 2022. "Heat transfer performance of deep borehole heat exchanger with different operation modes," Renewable Energy, Elsevier, vol. 193(C), pages 645-656.
  • Handle: RePEc:eee:renene:v:193:y:2022:i:c:p:645-656
    DOI: 10.1016/j.renene.2022.05.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122006966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Wanlong & Wang, Fenghao & Chen, Shuang & Chen, Chaofan & Liu, Jun & Deng, Jiewen & Kolditz, Olaf & Shao, Haibing, 2021. "Analysis of heat extraction performance and long-term sustainability for multiple deep borehole heat exchanger array: A project-based study," Applied Energy, Elsevier, vol. 289(C).
    2. Song, Xianzhi & Wang, Gaosheng & Shi, Yu & Li, Ruixia & Xu, Zhengming & Zheng, Rui & Wang, Yu & Li, Jiacheng, 2018. "Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system," Energy, Elsevier, vol. 164(C), pages 1298-1310.
    3. Choi, Jung Chan & Park, Joonsang & Lee, Seung Rae, 2013. "Numerical evaluation of the effects of groundwater flow on borehole heat exchanger arrays," Renewable Energy, Elsevier, vol. 52(C), pages 230-240.
    4. Luo, Yongqiang & Xu, Guozhi & Cheng, Nan, 2021. "Proposing stratified segmented finite line source (SS-FLS) method for dynamic simulation of medium-deep coaxial borehole heat exchanger in multiple ground layers," Renewable Energy, Elsevier, vol. 179(C), pages 604-624.
    5. Li, Ji & Xu, Wei & Li, Jianfeng & Huang, Shuai & Li, Zhao & Qiao, Biao & Yang, Chun & Sun, Deyu & Zhang, Guangqiu, 2021. "Heat extraction model and characteristics of coaxial deep borehole heat exchanger," Renewable Energy, Elsevier, vol. 169(C), pages 738-751.
    6. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    7. Huang, Yibin & Zhang, Yanjun & Xie, Yangyang & Zhang, Yu & Gao, Xuefeng & Ma, Jingchen, 2020. "Field test and numerical investigation on deep coaxial borehole heat exchanger based on distributed optical fiber temperature sensor," Energy, Elsevier, vol. 210(C).
    8. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2021. "Retrofitting abandoned petroleum wells as doublet deep borehole heat exchangers for geothermal energy production—a numerical investigation," Renewable Energy, Elsevier, vol. 176(C), pages 115-134.
    9. Chen, Chaofan & Cai, Wanlong & Naumov, Dmitri & Tu, Kun & Zhou, Hongwei & Zhang, Yuping & Kolditz, Olaf & Shao, Haibing, 2021. "Numerical investigation on the capacity and efficiency of a deep enhanced U-tube borehole heat exchanger system for building heating," Renewable Energy, Elsevier, vol. 169(C), pages 557-572.
    10. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    11. Bu, Xianbiao & Ran, Yunmin & Zhang, Dongdong, 2019. "Experimental and simulation studies of geothermal single well for building heating," Renewable Energy, Elsevier, vol. 143(C), pages 1902-1909.
    12. Yu, Han & Xu, Tianfu & Yuan, Yilong & Gherardi, Fabrizio & Feng, Bo & Jiang, Zhenjiao & Hu, Zixu, 2021. "Enhanced heat extraction for deep borehole heat exchanger through the jet grouting method using high thermal conductivity material," Renewable Energy, Elsevier, vol. 177(C), pages 1102-1115.
    13. Mottaghy, Darius & Dijkshoorn, Lydia, 2012. "Implementing an effective finite difference formulation for borehole heat exchangers into a heat and mass transport code," Renewable Energy, Elsevier, vol. 45(C), pages 59-71.
    14. Liu, Jun & Wang, Fenghao & Cai, Wanlong & Wang, Zhihua & Li, Chun, 2020. "Numerical investigation on the effects of geological parameters and layered subsurface on the thermal performance of medium-deep borehole heat exchanger," Renewable Energy, Elsevier, vol. 149(C), pages 384-399.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antiopi-Malvina Stamatellou & Olympia Zogou & Anastassios Stamatelos, 2023. "Energy Cost Assessment and Optimization of Post-COVID-19 Building Ventilation Strategies," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    2. Deng, Jiewen & Peng, Chenwei & Su, Yangyang & Qiang, Wenbo & Cai, Wanlong & Wei, Qingpeng, 2023. "Research on the heat storage characteristic of deep borehole heat exchangers under intermittent operation mode: Simulation analysis and comparative study," Energy, Elsevier, vol. 282(C).
    3. George Stamatellos & Olympia Zogou & Anastassios Stamatelos, 2022. "Energy Analysis of a NZEB Office Building with Rooftop PV Installation: Exploitation of the Employees’ Electric Vehicles Battery Storage," Energies, MDPI, vol. 15(17), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chao & Jiang, Chao & Guan, Yanling & Tan, Zijing & Zhao, Zhiqiang & Zhou, Yang, 2022. "Development and applicability of heat transfer analytical model for coaxial-type deep-buried pipes," Energy, Elsevier, vol. 255(C).
    2. Luo, Yongqiang & Xu, Guozhi & Zhang, Shicong & Cheng, Nan & Tian, Zhiyong & Yu, Jinghua, 2022. "Heat extraction and recover of deep borehole heat exchanger: Negotiating with intermittent operation mode under complex geological conditions," Energy, Elsevier, vol. 241(C).
    3. Cai, Wanlong & Wang, Fenghao & Chen, Chaofan & Chen, Shuang & Liu, Jun & Ren, Zhanli & Shao, Haibing, 2022. "Long-term performance evaluation for deep borehole heat exchanger array under different soil thermal properties and system layouts," Energy, Elsevier, vol. 241(C).
    4. Pokhrel, Sajjan & Sasmito, Agus P. & Sainoki, Atsushi & Tosha, Toshiyuki & Tanaka, Tatsuya & Nagai, Chiaki & Ghoreishi-Madiseh, Seyed Ali, 2022. "Field-scale experimental and numerical analysis of a downhole coaxial heat exchanger for geothermal energy production," Renewable Energy, Elsevier, vol. 182(C), pages 521-535.
    5. Jia, G.S. & Ma, Z.D. & Xia, Z.H. & Zhang, Y.P. & Xue, Y.Z. & Chai, J.C. & Jin, L.W., 2022. "A finite-volume method for full-scale simulations of coaxial borehole heat exchangers with different structural parameters, geological and operating conditions," Renewable Energy, Elsevier, vol. 182(C), pages 296-313.
    6. Zhang, Sheng & Liu, Jun & Wang, Fenghao & Chai, Jiale, 2023. "Design optimization of medium-deep borehole heat exchanger for building heating under climate change," Energy, Elsevier, vol. 282(C).
    7. Yazhou Zhao & Xiangxi Qin & Xiangyu Shi, 2022. "Heat Transfer Modeling on High-Temperature Charging and Discharging of Deep Borehole Heat Exchanger with Transient Strong Heat Flux," Sustainability, MDPI, vol. 14(15), pages 1-34, August.
    8. Li, Zhibin & Huang, Wenbo & Chen, Juanwen & Cen, Jiwen & Cao, Wenjiong & Li, Feng & Jiang, Fangming, 2023. "An enhanced super-long gravity heat pipe geothermal system: Conceptual design and numerical study," Energy, Elsevier, vol. 267(C).
    9. Luo, Yongqiang & Xu, Guozhi & Cheng, Nan, 2021. "Proposing stratified segmented finite line source (SS-FLS) method for dynamic simulation of medium-deep coaxial borehole heat exchanger in multiple ground layers," Renewable Energy, Elsevier, vol. 179(C), pages 604-624.
    10. Xiangxi Qin & Yazhou Zhao & Chengjun Dai & Jian Wei & Dahai Xue, 2022. "Thermal Performance Analysis on the Seasonal Heat Storage by Deep Borehole Heat Exchanger with the Extended Finite Line Source Model," Energies, MDPI, vol. 15(22), pages 1-38, November.
    11. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    12. Li, Chao & Guan, Yanling & Liu, Jianhong & Jiang, Chao & Yang, Ruitao & Hou, Xueming, 2020. "Heat transfer performance of a deep ground heat exchanger for building heating in long-term service," Renewable Energy, Elsevier, vol. 166(C), pages 20-34.
    13. Chen, Hongfei & Liu, Hongtao & Yang, Fuxin & Tan, Houzhang & Wang, Bangju, 2023. "Field measurements and numerical investigation on heat transfer characteristics and long-term performance of deep borehole heat exchangers," Renewable Energy, Elsevier, vol. 205(C), pages 1125-1136.
    14. Li, Chao & Jiang, Chao & Guan, Yanling & Chen, Hao & Yang, Ruitao & Wan, Rong & Shen, Lu, 2023. "Comparison of the experimental and numerical results of coaxial-type and U-type deep-buried pipes’ heat transfer performances," Renewable Energy, Elsevier, vol. 210(C), pages 95-106.
    15. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    16. Jun Liu & Yuping Zhang & Zeyuan Wang & Cong Zhou & Boyang Liu & Fenghao Wang, 2023. "Medium Rock-Soil Temperature Distribution Characteristics at Different Time Scales and New Layout Forms in the Application of Medium-Deep Borehole Heat Exchangers," Energies, MDPI, vol. 16(19), pages 1-22, October.
    17. huajun, Wang & Yishuo, Xu & Yukun, Sun & Sumin, Zhao, 2022. "Heat extraction by deep coaxial borehole heat exchanger for clean space heating near Beijing, China: Field test, model comparison and operation pattern evaluation," Renewable Energy, Elsevier, vol. 199(C), pages 803-815.
    18. Zhendi Ma & Siyu Qin & Yuping Zhang & Wei-Hsin Chen & Guosheng Jia & Chonghua Cheng & Liwen Jin, 2023. "Effects of Boundary Conditions on Performance Prediction of Deep-Buried Ground Heat Exchangers for Geothermal Energy Utilization," Energies, MDPI, vol. 16(13), pages 1-27, June.
    19. Yu, Han & Xu, Tianfu & Yuan, Yilong & Feng, Bo & ShangGuan, Shuantong, 2023. "Enhanced heat extraction performance from deep buried U-shaped well using the high-pressure jet grouting technology," Renewable Energy, Elsevier, vol. 202(C), pages 1377-1386.
    20. Li, Chao & Jiang, Chao & Guan, Yanling, 2022. "An analytical model for heat transfer characteristics of a deep-buried U-bend pipe and its heat transfer performance under different deflecting angles," Energy, Elsevier, vol. 244(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:193:y:2022:i:c:p:645-656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.