IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223033492.html
   My bibliography  Save this article

Numerical investigation on the long-term heating performance and sustainability analysis of medium-deep U-type borehole heat exchanger system

Author

Listed:
  • Huang, Shuai
  • Li, Jiqin
  • Zhu, Ke
  • Dong, Jiankai
  • Jiang, Yiqiang

Abstract

Exploiting low-carbon, clean, and stable medium-deep geothermal energy is critical to achieving clean and sustainable heating for buildings in northern China. The medium-deep U-type borehole heat exchanger (MDUBHE) system is a novel technology that has emerged recently for exploiting deep geothermal energy. However, previous studies mainly analyzed the heating characteristics of the MDUBHE system in a single building type (i.e., continuous operational conditions), and the long-term (15-year) heating performance under different operational conditions is still unclear. Moreover, the heating sustainability of the system in different regions has not been clarified. Therefore, to promote the application of the MDUBHE system, this paper conducts numerical simulations to analyze the system's long-term heating performance, thermal recovery characteristics of rock and soil, and the system's energy efficiency under different operational conditions and regions. The results show that the MDUBHE system has high heating sustainability under different working conditions. After 15 years of operation, the maximum decay rate of MDUBHE's outlet water temperature is less than 3.15 % under different operating conditions and less than 3.01 % in different regions. In addition, the maximum decay rate of total system heating capacity is less than 8.86 % under different operating conditions and less than 7.60 % in different regions. Furthermore, the intermittent operation of the system and the higher thermophysical properties of rock and soil can enhance the rock-soil's thermal recovery. The MDUBHE system can efficiently operate over the long term under different working conditions. The maximum decay rates of the system's energy efficiency are less than 1.86 % under different operating conditions and less than 1.60 % in different regions. The study could promote the application of the MDUBHE system in different regions.

Suggested Citation

  • Huang, Shuai & Li, Jiqin & Zhu, Ke & Dong, Jiankai & Jiang, Yiqiang, 2024. "Numerical investigation on the long-term heating performance and sustainability analysis of medium-deep U-type borehole heat exchanger system," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033492
    DOI: 10.1016/j.energy.2023.129955
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223033492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129955?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.