IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v193y2022icp309-333.html
   My bibliography  Save this article

Investigation on wind-structure interaction of large aperture parabolic trough solar collector

Author

Listed:
  • Malan, Anish
  • Kumar, K. Ravi

Abstract

Structural analysis and wind load effects on parabolic trough solar collector (PTSC) plays a critical role in the efficient and reliable operation of solar thermal power plants. In this study, the likely effect of the different wind load conditions on the stability of the large aperture PTSC has been undertaken. The investigation is an extension of the coupled optical and thermal analysis of the large aperture of PTSC, considering the manufacturing standard following Euro Trough and the availability of the receiver size (70 mm–110 mm). Based on the optical and thermal analysis, it has been identified that 9 m is the largest achievable aperture size, with a 110 mm absorber having an intercept factor of 0.94. The analysis is performed for the various operating condition such as pitch angle (0°–180°), yaw angle (−90°–90°) and wind speeds (5 m/s to 25 m/s). Firstly, the wind load coefficients have been estimated to determine the pressure, forces and pitching moment on the PTSC. The maximum drag force is encountered for the pitch angle of 0°, i.e. 6888 N for the wind speed of 25 m/s. Based on the pressure and gravity force acting on the concentrator, the effort has also been made to estimate the deformation in the concentrator and same is compared with Euro Trough collector. The maximum variation in the deformation is observed as around 35% for the pitch angle of 30°.

Suggested Citation

  • Malan, Anish & Kumar, K. Ravi, 2022. "Investigation on wind-structure interaction of large aperture parabolic trough solar collector," Renewable Energy, Elsevier, vol. 193(C), pages 309-333.
  • Handle: RePEc:eee:renene:v:193:y:2022:i:c:p:309-333
    DOI: 10.1016/j.renene.2022.04.141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122006097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reddy, K.S. & Singla, Hitesh & Natraj,, 2019. "Gravity & wind load analysis and optical study of solar parabolic trough collector with composite facets using optimized modelling approach," Energy, Elsevier, vol. 189(C).
    2. Naeeni, N. & Yaghoubi, M., 2007. "Analysis of wind flow around a parabolic collector (1) fluid flow," Renewable Energy, Elsevier, vol. 32(11), pages 1898-1916.
    3. Winkelmann, Ulf & Kämper, Christoph & Höffer, Rüdiger & Forman, Patrick & Ahrens, Mark Alexander & Mark, Peter, 2020. "Wind actions on large-aperture parabolic trough solar collectors: Wind tunnel tests and structural analysis," Renewable Energy, Elsevier, vol. 146(C), pages 2390-2407.
    4. Natraj, & Rao, B.N. & Reddy, K.S., 2021. "Wind load and structural analysis for standalone solar parabolic trough collector," Renewable Energy, Elsevier, vol. 173(C), pages 688-703.
    5. Hachicha, A.A. & Rodríguez, I. & Capdevila, R. & Oliva, A., 2013. "Heat transfer analysis and numerical simulation of a parabolic trough solar collector," Applied Energy, Elsevier, vol. 111(C), pages 581-592.
    6. Naeeni, N. & Yaghoubi, M., 2007. "Analysis of wind flow around a parabolic collector (2) heat transfer from receiver tube," Renewable Energy, Elsevier, vol. 32(8), pages 1259-1272.
    7. Zemler, Matthew K. & Bohl, Greg & Rios, Oziel & Boetcher, Sandra K.S., 2013. "Numerical study of wind forces on parabolic solar collectors," Renewable Energy, Elsevier, vol. 60(C), pages 498-505.
    8. Meiser, S. & Schneider, S. & Lüpfert, E. & Schiricke, B. & Pitz-Paal, R., 2017. "Evaluation and assessment of gravity load on mirror shape and focusing quality of parabolic trough solar mirrors using finite-element analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1210-1216.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Jian & Peng, YouDuo & Liu, YongXiang, 2023. "Optical performance evaluation of a large solar dish/Stirling power generation system under self-weight load based on optical-mechanical integration method," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunhong Shi & Davood Toghraie & Farzad Nadi & Gholamreza Ahmadi & As’ad Alizadeh & Long Zhang, 2021. "The effect of the pitch angle, two-axis tracking system, and wind velocity on the parabolic trough solar collector thermal performance," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17329-17348, December.
    2. Natraj, & Rao, B.N. & Reddy, K.S., 2021. "Wind load and structural analysis for standalone solar parabolic trough collector," Renewable Energy, Elsevier, vol. 173(C), pages 688-703.
    3. Hachicha, A.A. & Rodríguez, I. & Oliva, A., 2014. "Wind speed effect on the flow field and heat transfer around a parabolic trough solar collector," Applied Energy, Elsevier, vol. 130(C), pages 200-211.
    4. Abdulhamed, Ali Jaber & Adam, Nor Mariah & Ab-Kadir, Mohd Zainal Abidin & Hairuddin, Abdul Aziz, 2018. "Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 822-831.
    5. Moradi, Hamid & Mirjalily, Seyed Ali Agha & Oloomi, Seyed Amir Abbas & Karimi, Hajir, 2022. "Performance evaluation of a solar air heating system integrated with a phase change materials energy storage tank for efficient thermal energy storage and management," Renewable Energy, Elsevier, vol. 191(C), pages 974-986.
    6. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    7. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    8. Jebasingh, V.K. & Herbert, G.M. Joselin, 2016. "A review of solar parabolic trough collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1085-1091.
    9. El Ghazzani, Badreddine & Martinez Plaza, Diego & Ait El Cadi, Radia & Ihlal, Ahmed & Abnay, Brahim & Bouabid, Khalid, 2017. "Thermal plant based on parabolic trough collectors for industrial process heat generation in Morocco," Renewable Energy, Elsevier, vol. 113(C), pages 1261-1275.
    10. Zygmunt Lipnicki & Marta Gortych & Anna Staszczuk & Tadeusz Kuczyński & Piotr Grabas, 2019. "Analytical and Experimental Investigation of the Solar Chimney System," Energies, MDPI, vol. 12(11), pages 1-13, May.
    11. Clifford K. Ho, 2014. "Computational fluid dynamics for concentrating solar power systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(3), pages 290-300, May.
    12. Zemler, Matthew K. & Bohl, Greg & Rios, Oziel & Boetcher, Sandra K.S., 2013. "Numerical study of wind forces on parabolic solar collectors," Renewable Energy, Elsevier, vol. 60(C), pages 498-505.
    13. Jong-Woei Whang, Allen & Wang, Chun-Chieh & Chen, Yi-Yung, 2009. "Design of cascadable optical unit to compress light for light transmission used for indoor illumination," Renewable Energy, Elsevier, vol. 34(10), pages 2280-2295.
    14. Cheng, Z.D. & He, Y.L. & Cui, F.Q. & Du, B.C. & Zheng, Z.J. & Xu, Y., 2014. "Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model," Applied Energy, Elsevier, vol. 115(C), pages 559-572.
    15. Zuo, Hongyan & Tan, Jiqiu & Wei, Kexiang & Huang, Zhonghua & Zhong, Dingqing & Xie, Fuchun, 2021. "Effects of different poses and wind speeds on wind-induced vibration characteristics of a dish solar concentrator system," Renewable Energy, Elsevier, vol. 168(C), pages 1308-1326.
    16. Padilla, Ricardo Vasquez & Demirkaya, Gokmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2011. "Heat transfer analysis of parabolic trough solar receiver," Applied Energy, Elsevier, vol. 88(12), pages 5097-5110.
    17. Madadi Avargani, Vahid & Norton, Brian & Rahimi, Amir, 2021. "An open-aperture partially-evacuated receiver for more uniform reflected solar flux in circular-trough reflectors: Comparative performance in air heating applications," Renewable Energy, Elsevier, vol. 176(C), pages 11-24.
    18. Ma, Xinglong & Zheng, Hongfei & Liu, Shuli, 2019. "Optimization on a cylindrical Fresnel lens and its validation in a medium-temperature solar steam generation system," Renewable Energy, Elsevier, vol. 134(C), pages 1332-1343.
    19. Natraj, & Reddy, K.S., 2023. "Investigations of thermo-structural instability on the performance of solar parabolic trough collectors," Renewable Energy, Elsevier, vol. 202(C), pages 381-393.
    20. Kaloudis, E. & Papanicolaou, E. & Belessiotis, V., 2016. "Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model," Renewable Energy, Elsevier, vol. 97(C), pages 218-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:193:y:2022:i:c:p:309-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.